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Abstract

The quadratic dependence measure is related to measures used in independence tests, but is derivable, thus suitable for indepen-
dent component analysis. An adjustable kernel allows to accelerate the convergence of the estimator without affecting the bias. To
cite this article: S. Achard, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Propriétés asymptotiques d’une mesure de dépendance quadratique robuste aux grandes dimensions. La mesure de
dépendance quadratique peut-être reliée aux mesures utilisées dans les tests d’indépendance, mais étant de plus dérivable, on peut
l’utiliser dans les méthodes d’analyse en composantes indépendantes. Un noyau ajustable permet d’accélérer la convergence de
l’estimateur sans pour autant affecter son biais. Pour citer cet article : S. Achard, C. R. Acad. Sci. Paris, Ser. I 346 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Since the 1950s, there has been a continuous research activity over the definition of measures of dependence:
positive functions that are equal to zero if and only if the variables are independent. Hoeffding [8] proposed to define an
independence test by comparing the joint cumulative distribution function and the product of the marginal cumulative
distribution functions. Then, in the 1970s several authors [10,2,6], have studied independence tests, e.g. by comparing
the joint density and the product of the marginal densities. But, in general, these tests are constructed to control
the independence of only two variables, and are unsuitable in higher dimensions because of the curse of dimension
in estimating the density. In this Note, we study the dependence measure called quadratic dependence [1] whose
definition involves an adjustable kernel function. In order to relate this quadratic dependence with other existing
dependence measures (e.g. [3,5,9]), we derive two different expressions for it (Section 2). The first one is based on the
comparison of the joint characteristic function and the product of the marginal characteristic functions, which allows
us to derive asymptotic properties of the estimator. The second one is based on its decomposition as U-statistics, and
allows us to prove asymptotic normality and to gain insight on the crucial choice of the kernel bandwidth (Section 3).
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2. A kernel-based characterisation of independence

We introduce a dependence measure which is continuous and derivable, so as to allow convenient minimisation
procedures. Let K be a summable function such that its Fourier transform is different from zero almost everywhere.
Then, for any random variables Y1, . . . , YK , the equality of E[∏K

k=1 K(yk − Yk)] and
∏K

k=1 E[K(yk − Yk)] for all
vectors (y1, . . . , yK) in R

K is equivalent to the independence of Y1, . . . , YK . Thus, a dependence measure can be
obtained by associating this characterisation of dependence with a quadratic measure, as described below.

Definition 1 (Quadratic dependence). Let K be a square-summable kernel function with Fourier transform different
from zero almost everywhere. For a set of K random variables Y1, . . . , YK (with finite variance), we define the
quadratic measure of their (mutual) dependence as

Q(Y1, . . . , YK) =
∫ (

E

[
K∏

k=1

Kh

(
yk − Yk

σYk

)]
−

K∏
k=1

E

[
Kh

(
yk − Yk

σYk

)])2

dy1 · · ·dyK, (1)

where Y = (Y1, . . . , YK)T and σYk
is a scale factor, that is, a positive functional of the distribution of Yk such that

σλYk
= |λ|σYk

, for all real constant λ, and Kh = K(x/h)/h.

Since for any random variables Y1, . . . , YK , Q(Y1, . . . , YK) is zero if and only if the random variables Y1, . . . , YK

are independent, the function Q is a dependence measure. This follows from the continuity of the characteristic
functions and the equivalent expression of Q in terms of the characteristic functions as stated in Lemma 2:

Lemma 2. Let us define ψY the joint characteristic function of Y1, . . . , YK , ψYk
the characteristic function of Yk , and

ψK the Fourier transform of K. The quadratic dependence Q can be expressed as a weighted average of the difference
between the joint characteristic function and the product of the marginal characteristic functions:

Q(Y1, . . . , YK) = 1

(2π)K
∏K

k=1 σYk

∫ K∏
k=1

∣∣σYk
ψKh

(σYk
yk)

∣∣2

∣∣∣∣∣ψY(y1, . . . , yK) −
K∏

k=1

ψYk
(yk)

∣∣∣∣∣
2

dy1 · · ·dyK. (2)

This lemma is proved using the Parseval formula, stating that the Fourier transform is unitary. Also, it is easily verified
from (1) that the quadratic dependence is invariant by translation and by multiplication by a scalar. The measure (2)
has been studied previously [9,5,6], but only in the particular case where K is a Gaussian kernel and without a scaling
factor. When the bandwidth tends to zero and under usual hypotheses for the density and the kernel, Q is equal to
the quadratic measure of the difference between the joint density and the product of the marginal densities. In [3],
they study the minimum of an estimator of (2) in the context of linear ICA and prove its consistency independently
of the choice of a kernel.1 They point however that the choice of a kernel and especially, variations of its bandwidth,
can change dramatically the variance and convergence in moment of the estimators. By defining an independence test
based on the quadratic dependence measure, the purpose of the present study is to shed some light on the behaviour
of this test in terms of the kernel bandwidth. The quadratic dependence as rewritten in (2) is not easy to estimate
because of the multiple integration. The following lemma derives a formula for the quadratic dependence from which
a convenient estimator arises. The kernel trick employed for this is specific to this measure, and is a first step to address
the problem of the curse of dimension.

Lemma 3. Let K2 be the convolution of K with its mirror, i.e. K2(u) = ∫
K(u + v)K(v)dv. For a set of K random

variables Y1, . . . , YK (with finite variance), the quadratic measure of their (mutual) dependence is equivalent to

Q(Y1, . . . , YK) = E
[
πY(Y)

] +
K∏

k=1

E
[
πYk

(Yk)
] − 2E

[ K∏
k=1

πYk
(Yk)

]
,

1 Note also that, in their definition, there is no scaling factor in the weight function, and therefore, no invariance by multiplication by a factor.
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πY(y) = E

[ K∏
i=1

K2,h

(
yi − Yi(n)

σYi

)]
, πYk

(yk) = E

[
K2,h

(
yk − Yk(n)

σYk

)]
. (3)

The proof of this lemma is obtained by developing the square term and using Fubini’s theorem to inverse the in-
tegration variables. This lemma shows that Q depends on K only indirectly through K2, therefore we can choose
K2 directly without ever considering K. For consistency with its definition, K2 must be chosen such that its Fourier
transform is a positive summable even function. Indeed, its Fourier transform corresponds to |ψK|2 where ψK is the
Fourier transform of a real square-summable function. Moreover, the Fourier transform of K2 has to be different from
zero almost everywhere.

An estimator of Q is defined using expression (3). In the sequel, the observed data will be denoted by Yk(n),
n = 1, . . . ,N ; k = 1, . . . ,K ; N being the sample size and the scaling factor σ = (σY1, . . . , σYK

) is supposed to be
known, that is independent of the sample. Let us remark that (3) involves only the expectation operator E, thus a
natural estimator Q̂ of Q can be obtained simply by replacing this operator with the sample average Ê, defined
as Êφ(Y) = ∑N

n=1 φ(Y(n))/N , for any function φ of K (real) variables. Note that the computational cost of the
estimator Q̂ is of order KN2. As the exact expression of Q is given in terms of the characteristic functions, the

estimator Q̂ can alternatively be rewritten in terms of the estimators of the characteristic functions.

3. Asymptotic properties

The asymptotic behaviour of the estimator Q̂ under the hypothesis of dependence of the random variables is given
first. Then, using U-statistics, the variance of the estimator Q̂ is computed. Finally, it is shown that the estimator Q̂

converges to a Gaussian distribution.

Lemma 4. Suppose that the Fourier transform of K2 is positive, different from zero almost everywhere. Then, under
the hypothesis of the dependence of the random variables Y1, . . . , YK , limN→+∞ Q̂(Y1, . . . , YK) > 0 a.s., for any
cumulative distribution function of Y.

This lemma is proved using that supy∈B |ψ̂Y(y)−ψY(y)| a.s.−→0 and supy∈B |∏K
k=1 ψ̂Yk

(yk)−∏K
k=1 ψYk

(yk)| a.s.−→0,

N → +∞ [4]. Unlike the case for the estimation of the density, the estimator Q̂ is unbiased, that is E[Q̂] = Q [7].
This result is completely independent of the choice of the kernel. Consequently, the bandwidth does not have to assume
a specific dependence on the sample size in order to achieve convergence in mean. In particular, the bandwidth does
not have to vanish as the sample size tends to infinity. Moreover, the convergence of the estimator of Q̂ does not suffer
from the problem of curse of dimensionality. Also we show that the variance of the estimator Q̂ goes to zero for any
fixed bandwidth and deduce that var(Q̂) = O(K2/N). The variance of the estimator depends on the choice of the
kernel and its bandwidth, and on the distribution of the observations.

The quadratic dependence measure provides us with an estimator for the evaluation of the dependence between
variables. In the following, we construct a hypothesis test of independence based on the quadratic dependence mea-
sure. The asymptotic laws under the hypotheses of independence (denoted H0) and dependence (denoted H1) are
deduced. Finally, it is shown that this hypothesis test of independence is consistent for any choice of the bandwidth.
Law under the hypothesis of independence (denoted H0):

The estimator NQ̂ follows asymptotically a law of γχ2(β) where γ and β are γ = V1/2E1 and β = 2E2
1/V1,

where E1 = limN→∞ NE[Q̂] under H0, and V1 = limN→∞ Nvar(Q̂) under H0 [9].
Law under the hypothesis of dependence (denoted H1):√

N(Q̂ − Q) follows asymptotically a normal law with zero mean and variance in O(K2).

Lemma 5. The independence test defined above is consistent for any choice of the bandwidth: Given α, the level of
significance, we define qα the smallest number satisfying the inequality PH0(Q̂ > qα) = 1−Fγχ2(β)(Nqα) � α. Then,

the power of the test 1 − PH1(Q̂ < qα) tends to 1 as N goes to infinity.
In addition, the power of the test admits a lower bound:

1 − PH1(Q̂ < qα) = PH1(Q̂ > qα) > 1 − var(Q̂)/(qα − Q). (4)
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Fig. 1. Variance (decreasing) and type II error (increasing) for different sample sizes. —, N = 100, - - -, N = 200, · · ·, N = 400, - · -, N = 800,
– – –, N = 1600.

This lemma is proved using the Chebychev inequality and the asymptotic properties of the variance. Note that the
lower bound in (4) is not sharp, as is illustrated in Fig. 1.

It is not necessary to choose the bandwidth so as to make a tradeoff between the bias and the variance, since the
asymptotic bias of the estimator tends to zero when the size of the sample N goes to infinity without any constraint on
the bandwidth. As a result, the bandwidth can rather be adjusted in a tradeoff between the minimisation of the variance
and the minimisation of the type II error of the test. With the expression of the variance given above, it is clear that
when the bandwidth h of the kernel increases, the variance of the estimator will decrease. But, as the bandwidth h

increases, the type II error of the test is expected to increase. Indeed, the asymptotic power of the test is defined by
1 − PH1(Q̂ < qα) = 1 − Φ((qα − Q)

√
N/σ) where for a given α, qα verifies PH0(Q̂ > qα) = 1 − Fγχ2(β)(Nqα).

Fig. 1 illustrates the behaviour of optimal choices of the bandwidth depending on the size of the sample. In this figure,
we observe that for a given bandwidth the convergence of the variance of the estimator is slow (of order 1/N ). But,
if the bandwidth is adjusted to make a tradeoff between the variance and the power of the test, the convergence rate is
tremendously increased. Future work has to be done to quantify this increase and to propose a computational rule to
optimise the bandwidth.

4. Conclusion

The quadratic dependence measure is revisited and its asymptotic properties are demonstrated. The convergence
rate in terms of the variance is of order 1/N , and the power of the test defined by this measure converges to one with
a rate of 1/N at least, N being the sample size. The introduction of a kernel frame in the definition of the quadratic
dependence measure enables us to propose an efficient estimator of computational cost of order KN2, with K the
dimension of the problem. This kernel is adjusted with a bandwidth whose choice does not affect the bias. This differs
with the case of the estimation of density. Because of this property, the bandwidth can be chosen in terms of the
sample size N , so as to increase the convergence rate of the variance and of the power of the test rather than debiasing
the estimator.
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