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ABSTRACT dependence measure. Thanks to simple computation and the

This work focuses on solving the problem of Blind SourceP0ssibility to carry out an asymptotic study, the quadraéie
Separation (BSS) using Independent Component Ana|ysger_1dence allows us to better characterize the behaviobeof t
(ICA) method. Since ICA methods require a dependencéstimators and the solution of the BSS problem.

measure, we will investigate the use of mutual information  In this paper, we compare the two dependence measures,
and quadratic dependence. Mutual information has alread§e¢ mutual information and the quadratic dependence. First
often been used for solving BSS problem, but difficulties ocfrom a statistical point of view, we show the good proper-
cur in order to carry out an asymptotic study. In contrastfies of the quadratic dependence in contrast of the difficult
the quadratic dependence was introduced recently and-has k) carry out an asymptotic study for the mutual information.
ready been used forindependence tests. Finally, the difficu Then, some examples of the shape of the objective-functions
of solving the BSS problem is illustrated through exampledn the context of a linear mixture and nonlinear mixture are

of the shape of the objective-functions. described, which show the difficulty to apply a minimization
method due to the estimation problem but also to the com-
1. INTRODUCTION plexity of the mixture.

Section 2 shows the statistical properties of the estima-
s of the mutual information and quadratic dependence.
is results in a detailled comparison between the two
Yependence measures in terms of asymptotic behaviour
of their estimators. Section 3 exhibits examples of the

L . L M&ndscape of the objective-functions which have to be
criterion related to independence. Such criterion oftest po inimized. Especially, we note an important increasing in

sesses the contrast property in the sense that it can be mildsysjexity for solving the problem of BSS in the context of
mized if and only if the outputs of the separation system arg, post nonlinear mixture.

mutually independent [7, 11]. In the context of linear mix-
tures, contrast functions can be constructed from cumsilant
[7] or even correlations if lagged correlations are incllide
[13]. This is possible because of the strong constraintef i the observed sianab X are related to the sources
earity of the mixture, since it is well known that the indepen h %th 1 latic K

dence between a set of random variables cannot in gener%ll’ --+»5 through the relations

be inferred from the fact that some of their correlations and

cumulants are zero. (One needs to consider all of them.) In _ g K A _— K

the nonlinear mixtures problem, it is therefore of intetest X = i(kz kS =4

consider dependence measures which completely character- =1
izes independence, in the sense that the measure can be zggo, oA denotes thik-th entry of the mixing matrixA and
if and only if independence has been achieved. Of course, ik

such measure can be of interest in the linear mixture contexf) 2 fic are nonlinear functions. Itis assumed that there is
100 }ﬂﬁe same numbdf of sources and observations, the matrix

. L : A isinvertibleand the functiond; are monotonous, so that
The mutual information is a well known and widely used '

- . the sources can be recovered from the observatibase
dependence measure. Its use in nonlinear BSS has be
P kfowsA and fi,..., T

introduced in Taleb and Jutten [12] and Babaie-Zadeh [5], The blind source separation problem consists in findin
among others. This measure is however difficult to estimatea1 trixB andK i F: P that th d 9
as it involves the estimation of entropy which requires den- matrixt andi applica 'OESJP'”’QK S0 that the random
sity estimation. This can cause severe difficulty for high di variablesj=1,....,K, Y, = 5., By Z,, where Z =g, (X,),
mensional data. Although it is possible to reduce a criterio Which represent the reconstructed sources, are independen
based on mutual information to the one based only on thédeed, it has been shown [5, 2] that the independence of the
marginal entropies, this approach can lead to large bias di@/tPutY, ..., Y, impliesY, = ;S ;, (wherea (i) is a per-

to bias in density estimation. For these reasons, it coutsf be mutation ovef1,2,...,K} anda;,...,ay are scale factors),
interest to consider other dependence measures. Such a mea- source separation is achieved with scale and perrontati
sure is considered in Achaet al. [4] called the quadratic indeterminacies, as for linear mixtures.

Blind source separation (BSS) consists in extracting indeg,,
pendent sources from their mixtures without relying on spe p,
cific assumptions about the mixture and the sources distrib
tion other than their independenc&herefore most methods

The post nonlinear model
Let us recall the definition of a post nonlinear mixture:



In the following, let us denotX(1),...,X(N) a sample wheregis any continuously differentiable invertible function
of X = (Xy,...,X¢)" of sizeN and for alli = 1,...,N and  andX is any random vector admitting a density.

k=1,...,K, Z (i) = g,(X(i)) andY, (i) = z}j(:lBijj (i). _ As aresult, thg mi_nimum of does not gorrespond_to_the

minimum ofl. This difference leads to different minimiza-
2. DEPENDENCE MEASURES tion algorithms. _ _
) We notice also, see [3] for a proof, that if the variables

2.1 Mutual Information Y,,...,Y are independent, the main difference between the

As a measure of dependence, let us consider the mutual ibias ofC andT is its limit whenN tends to infinity. Indeed,

formation of the random variable§, ..., Y1 I1(Yy,...,Y«) = we notice that whell tends to infinity, the bias of tends to

SEIHY) — H(Y, -, Y, whereH denotes the entropy, zero only ifh tends to zero (with a sufficient low rate), while

H(X) = —E[log(pyx (X))], Py is the density function oX. the bias ofl tends to zero wheN tends to infinity even for

As already shown in [10], the mutual information is al-
ways positive and is equal to zero if and only if the rando
variablesy,, ..., Y, are independent. Thuk(Y,,...,Y) can
be used as a criterion for blind source separation.

The estimation of the mutual information however in-
volves estimators of both the marginal and the jointen&spi 2 2 Quadratic dependence
which in turn requires the estimations of marginal and joint i
densities. Especially, joint density estimation in a high d 2-2-1 Definition
mensional space is difficult, because of the “curse of dimentet us first recall the definition of the quadratic dependence
sion”. Usually, for overcoming this problem, the estimatio as defined in [4].
of joint entropy and hence that of joint density, is avoidgd b o ) ) )
expressing the joint entropy of the reconstructed sourses &¢€finition 2.1 Let.%7” be a real kernel function with a posi-
the sum of the observation joint entropy and of the expectetve Fourier transform, summable and different from zero al
Jacobian of the separating system (see equation 1). For a [if0st everywhere. For a set of K random variables Y, Y,
ear mixture, this trick leads to algorithms easy to impletnen We define the quadratic measure of their (mutual) depen-
based on minimization of the mutual information [11, 6].  dence asY B

However for post nonlinear (PNL) mixtures, the above < 1"’ k)=

fixed h. This suggest to userather tharC, so that the con-
Myergence does not depend on the choide. df also explains
the efficiency of even simple histograms estimates [5] and
the robustness concerning the choicé of the kernel.

method introduced some bias in estimating the reduced cri- 1 K K
terion and therefore, it might be preferable to consideiia cr 5 EM(Y)+[]E {T‘vk(Yk)} —2E|[] (M)
terion based directly on the mutual information. For a post k=1 k=

nonlinear mixture, Taleb and Jutten [12] suggest to transfo K . _Y.(n
the above mutual information so as to keep only terms witr\{vhere n,(y) = E |'lJif yITI()
= Y
)

marginal entropy. They obtain the reduced criterion:
£ | () |
Oy,

and oy, is a scale factor, that is a positive functional of the
distribution of Y such thaw,,, = |A |0y , for all real constant

i k
A.

K K
C(Yla---’YK)=ZH(\G)—_Z\H(Zi)—Iog|detB|. 1) 7o O

Since the mutual information betwegp ..., Z, is equal
to that betweelX,, ..., X, it can be seen that,

T ¥ = CY o M) 10X, %)- () This dependence measure is called a quadratic dependence

As|(Xq,....%) is a constant, the minimum 6KY,, ..., Y, ) because it can be written in terms of an integral of the square
is the same as the one W, ..., Y, ). Y difference between the joint and marginal characteristict

The above criteria(Y, . v o) gndC(Yl, ....Y) arethe-  tions, weighted by the Fourier transform of the kernel. _
oretical criteria, in practice one has to estimate them tifer Thus we have at our disposal a whole class of quadratic
estimation of these two criteria, we will simply use an esti-T'€asures, depending on the choice of the kerfeind also
mation of entropy defined as: on the bandwidtt_if we choose the kernel to be a scaled

kernel of the form’ (- /h) /h. Let us stress that the kerngl

does not need to be a density, dndoes not need to be very

=z

ﬁ(y) — 1 logpy (Y (n)) () small. Thus we have a lot of degrees of freedpm in qhoosing
N & them. Since we do not know how these choices will affect
the performance of the method, we will have to choose them
andpy, is a kernel estimation of density. in anad hocmanner. Due to the large degree of freedom

But, as shown in [3], the estimatorsandC do not sat- in the choice of the kernel, the estimation of the quadratic
isfy anymore the relation (2). Indeed, the kernel-density e dependence will be more robust in terms of the choice of the
timator does not satisfy the well-known relation between &ernel and the bandwidth.
density and a transformed density: L

2.2.2 Estimation
_ px(gfl()’)) As the dependence meas@énvolves only the expectation
pg(X)(y) " g9 L(y))] operatorE. Thus a natural estimator @ can be obtained



by just reglacing this operator with the sample averﬁge (a)
defined a£¢(X) = 31_; @(X(n))/N, whereg s any func- os ‘ ‘
tion of the data.

Gaussian

R
0.4 |+ Cauchy Derivative -

2.2.3 Asymptotic properties

¢ Law under the hypothesis of independeaenoted Hj):
This result is due to Kankainen [9]. The estimamé ‘
follows a law of yx2(B) wherey and B are defined as, o1l
y =V,/2E, and B = 2EZ?/V,, whereE, is the mean ofQ
under Hy,andV, is the variance o€ under H.

o Law under the hypothesis of depende(denoted H): ‘ ‘ ‘ ‘
The derivation of the law of the estimator of the quadratic 0 ! 2 3 4 s
dependence comes form results about U-statistics, [8, 9]. (b)
VN(Q — Q) follows asymptotically a normal law with 0 ‘ ‘ ‘ ‘ ‘ ‘
mean and? variance, where? is, 4t Gaussian

x
2 Cauchy Derivative -

03!

2x 02

with X the variance-covariance matrix of the corresponding
U-statistics dependent a#” andh. Due to the lack of space, o8y
the reader is invited to refer to [1] for the exact formulas of 06|
the variances under each hypotheses.

These results allow us to propose a solution of the choice

of the optimal bandwidth given a particular kernel. In the o2 f

sequel, we will focus on two different kernels, the Gaussian ol SR |
kernel:.# (x) = e and the second derivative of the square o 1 2 s 4 s & 1
Cauchy kernel.# (x) = —(20x% — 4) /(1 +x?)* Figure 1 (a) "

illustrates the behaviour of the size of the confidence inter_. . . .
vals in terms of the bandwitdh with two different kerneks. Figure 1: (a) Size of the confidence intervals and (b) power
is the solution of the equatio?(—x < Q — Q < x) = 0.95. of the independence test in terms of the bandwidth using two
Clearly, we observe that it is worthwhile to use a large banddifferentkernels

width in order to get a very small variance. But with a3.2 Post nonlinear mixtures

large bandwidth, the power of the independence test can l?

very low, as described by the following figure 1 (b). In b £ th ist f local mini d
figure 1 (b), for the computation of, we first compute appear because of the exisience of Some local minima an
~ . the performance of the estimation. The landscape of the
Qo such thath, (Q > qq) = a, with a = 0.95 and then, 4 aqratic dependence given in figure 3 shows the complex-
p=1-P, ((j < Oa)- ity of the minimization in a simple example of a post non-
! finear mixture with two source$ = (S;,S,)T, a rotation

In conclusion, we have to choose the bandwith in orde trix A with | 8 and onl f functi
to have a small variability but also in order to keep a highma fX ;’i‘gr( )ang er/8 and only one nonlinear function,

power for the independence test. The possibility to constru f; , (X) = *53 (~1++/1+4A[x]), A = 3. Then the separa-
an independence test is also very interesting in the sease thion structure is defined by, a rotation matBxwith angle6
we will be able to control the gradient descent method in thend two functiong, , (x) = x+ Ax|x| and g(x) = x. In this
minimization process. Indeed, this allows us to recognize gjmple example, we observe that the choice of the initializa
local minimum from a global minimum, and to propose antjon point for the minimization can be crucial, because ef th
efficient criteria to control the convergence of the aldorit  axistence of local minima.
Finally, figure 4 is a representation, in a logarithm scale,

3. ILLUSTRATIONS of figure 3 around the global minima, using a small band-
In this section, our objective is to illustrate what kind @kd ~ Width. The small oscillations observed on figure 4 are close
ficulties may appear in the research of the minimum of thd© the global true minimum. This shows how the choice of
objective-functions like the quadratic dependence or the m the bandwidth can improve the accuracy of the method.
tual information.

e . : e 1
n the case of a post nonlinear mixture, some difficulties

4. CONCLUSION

The study of different dependence measures is crucial in the
Figure 2 represents the landscape of the quadratic depeimprovments of ICA methods, especially to solve the BSS
dence in a simple example of a linear mixture with twoproblem for nonlinear mixtures. In contrast to the mutual in
sourcesS = (S,S,)T: X = AS, with A a rotation matrix ~ formation, the quadratic dependence measure is easy to im-
of anglerr/8. Then the separation structure is defined byplement even for nonlinear mixtures. And due to the possi-
Y, = X, +aX,, Y, = bX, +X,. In this context, it is possible bility to carry out an asymptotic study, it is possible to pro

to show that the initialization point of the minimizatione® pose efficient control for the minimization algorithm. Fhet

not affect the convergence of the algorithm [1]. works will consist in characterizing precisely the behavio

3.1 Linear mixtures



of the estimation of the solution of the BSS problem in terms
of the parameters used in the definition of the quadratic de-
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Figure 2: Representation of the estimator of the quadratic

dependence measure with a Gaussian kernehaad.5 in

terms ofa andb. PO and P1 denote the global minima.

pendence.
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Figure 3: Representation of the estimator of the quadratic
dependence measure with a derivative square Cauchy kernel
andh = 3 in terms of6 andA. PO denotes the global mini-
mum, P1 and P2 denote local minima.
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the quadratic dependence measure with a derivative square
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