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Time Localization of Transients
With Wavelet Maxima Lines

Sylvain Meignen, Sophie Achard, and Pierre-Yves Guméry

Abstract—In this study, we present a new estimator of transients built
from the extrema of a signal decomposition first introduced by Berkner.
We study the performance of the new estimator of transients both for a
variation of amplitude and a variation of frequency of the signal. We show
that the time localization of transients is better estimated with the maxima
lines made by the extrema in the time scale-space than with the wavelet
coefficients computed with the CWT. We also verify that this improvement
is not to the detriment of detection performance.

Index Terms—Estimation of transients, maxima lines, wavelet decompo-
sition.

I. INTRODUCTION

In this paper, we study the time localization of transients generated
by either a variation of frequency or a variation of amplitude using
wavelet extrema. We build a nonparametric estimator of transients
which we compare to estimators that use wavelet coefficients. We do
this both in terms of estimation and in terms of detection [6], [9] on
Gaussian signals, for the sake of simplicity.

The coefficients of wavelet transforms at different scales have been
extensively used for change detection [1], [6], [9]. The robustness
of the detector based on wavelets coefficients imposes to consider
scales that correctly cover the frequency bandwidth of the signal [5]:
the choice of pertinent scales is often a complicated issue. A second
drawback of these methods is time delocalization of transients when
the scale increases. The study of extrema of the signal decomposition
over Gaussian or derivatives of Gaussian functions is a good mean to
solve this problem. Indeed, extrema that arise from the convolution
of the signal with Gaussian functions or derivatives of Gaussian
functions are known to form connected curves in the time-scale space
[12] called maxima lines, which link any singularity at a given scale
to its origin at the finest scale. However, the practical construction
of the maxima lines associated with these wavelet decompositions
require ad hoc procedures. We, therefore, use an approximation of the
continuous wavelet transform [2] for which the construction of the
maxima lines is mathematically defined. A second remaining problem
is the choice of pertinent scales. After proving the completeness of the
signal decomposition we use, we study the reconstruction of signals
from extrema to derive automatically the pertinent scales to use. The
construction of the estimator is based on the properties of maxima
lines over the selected pertinent scales. Reference parameters are
estimated over intervals without transients, and then, the quality of the
estimator is tested through the computation of mean square errors and
receiver operating characteristic (ROC) curves.
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The outline of the paper is as follows. We first recall convergence
properties of discrete B-splines of which the signal decomposition we
use is a particular case (Section II). Section III is devoted to the com-
pleteness of the decomposition, whereas in Section IV, we define the
maxima lines and the characteristic scale that arises from their signal
reconstruction properties. Section V details the construction of the es-
timator of transients, whereas a comparison with a wavelet coefficient-
based method concludes the paper.

II. CONVERGENCE OF DISCRETE B-SPLINES TO GAUSSIAN FUNCTIONS

In this section, we briefly recall the simple convergence properties of
discrete B-splines to better understand the relation between the filters
we will use and Gaussian functions. The continuous B-spline of order
n > 0 is

�n(x) =

n+1

�0 � �0 � � � � � �0(x) (1)

where �0 is the characteristic function of the interval [0; 1]. The dis-
crete B-spline of order n > 0, at scalem, is defined by [11]

bnm =

n+1

b0m � b0m � � � � � b0m (2)

where b0m = (1=m)f1; 1; . . . ; 1g is the normalized sampled pulse of
width m � 2. We also define b�1m = �0, where (�l[p])p2 is the
sequence that equals 1 if p = l and zero otherwise. The link between
discrete and continuous B-splines is the dilation equation

1

m
�n

x

m
= bnm � �n(x): (3)

While B-splines at different scales m involve a basis function with
a regularity given by the order of the spline, the sequence of filters
bnm with fixed m and large n are approximations of a Gaussian func-
tion (i.e., C1). LetX denote a discrete random variable with uniform
distribution over the set f�((m � 1)=2); . . . ; ((m � 1)=2)g (resp.
f�(m=2) + 1; . . . ; (m=2)g) for m odd (resp. even). Then, bnm[p] is
the probability that the sum of n+1 independent identically distributed
(iid) variablesXi is equal to p (since the law of a sum of iid variables is
obtained by convolution of their probability distributions). The mean
of the variable Xi is 0 (resp. 1/2) if m is odd (resp. even), whereas
its standard deviation is ((m2 � 1)=12). Applying the central limit
theorem, we get

n+1

i=1

Xi � �n+1
2

(n+1)(m �1)
12

!
n!+1

N(0; 1)

in distribution, where � = 1 ifm is even and 0 otherwise. We suppose
that this is the case throughout the paper. This convergence property
leads to the approximation for large n:

bnm[p] �
6

�(n+ 1)(m2 � 1)
exp

6(p� �n+1
2

)2

(n+ 1)(1�m2)
:
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To derive approximations of the derivatives of the Gaussian function,

we consider � = f1;�1g, �k =

k

� � � � � � �, and bnm;k = �k � b
n
m.

With these notations, the following theorem holds.
Theorem 1: For large n, we have

bnm;k[p] �
6

�(n+ 1)(m2 � 1)

� exp
6x2

(n+ 1)(1�m2)

(k)

p�
�(n+ 1) + k

2
:

This result is proved in Appendix A. We recall that n is the order of the
B-spline, 1=m is the sampling rate of the interval [�1=2; 1=2], and k is
the order of the derivative. To get an approximation of the kth derivative
of the Gaussian, one must shift the filter bnm;k properly ; we define

�nm;k[p] = bnm;k p+
�(n+ 1) + k

2
(4)

where b�c denotes the integer part to obtain unshifted approximations
of the derivatives of Gaussian functions.

III. RECONSTRUCTION PROPERTY OF THE FILTERS �nm;k

By analogy with the wavelet decomposition that uses reverse time
version of the wavelets, we consider the correlation of the sequence
f [j] with �nm;k[j] defined in (4):

8 p 2 cnm;k[p] =
j2

�nm;k[j]f [j + p]

=
j2

�nm;k[j � p]f [j] for n � �1:

The family G = �n;pm;k[j] = �nm;k[j � p]; p 2 ; N > n � �1 is
a frame of l2( ) if and only if the Fourier series of �nm;k for N >
n � �1 do not have a common zero in [�1=2; 1=2] ([10, Corol. 3]).
As �nm;k[p] is a shifted version of b

n
m;k[p] (see (4)), both Fourier series

have the same modulus, which is given by

�̂nm;k(�) = 2kj sin(��)jk
sinc(�m�)

sinc(��)

n+1

:

If k > 0 (the case k = 0 is uninteresting) and for N � n � 0,
the Fourier series is null at � 2 fjl=mj � 1=2; l 2 g, and if n =
�1, the Fourier series is null at � = 0. The family G therefore does
not satisfy the frame condition if k > 0. However, if we add to G
the complementary sequence �N;p

m;k
, 0 � k0 < k, we have a frame

since the Fourier series of �N;pm;0 is not null for � = 0. Although this
construction is not optimal in terms of number of basis filters, it will
prove to be relevant for our purpose. From the frame theory, the signal
f can then be expanded as [4]

f [l] =
0�k <k p2

cNm;k [p]~�N;p
m;k

[l] +

N�1

n=�1 p2

cnm;k[p]~�
n;p

m;k[l] (5)

where ~� denotes the frame dual to

FN
m;k = �N;p

m;k
; 0 � k0 < k; �n;pm;k;�1 � n < N; p 2 :

Formula (5) ensures that the reconstruction of f with the coefficients
of the decomposition is always possible but may be complicated. How-

ever, form = 2, we show that we have a simple and explicit formula.
Indeed, recall that the sequence cn2;k satisfies

if n+ k is odd; cn2;k[p] =
1

2
cn�12;k [p� 1] + cn�12;k [p]

cn2;k[p] = cn2;k�1[p� 1]� cn2;k�1[p]

else, cn2;k[p] =
1

2
cn�12;k [p] + cn�12;k [p+ 1]

cn2;k[p] = cn2;k�1[p]� cn2;k�1[p+ 1] (6)

which leads to

1

2
cn�12;k [p] = cn�12;k�1[p]� cn2;k�1[p] n+ k odd

1

2
cn�12;k [p] = cn�12;k�1[p� 1]� cn2;k�1[p]; otherwise (7)

and finally, for �1 � l � N � 1

cl2;k�1[p] = cN2;k�1 p+
N � l + 1

2

+
1

2

N�1

n=l

cn2;k p+
n� l + 1

2
; k odd

cl2;k�1[p] = cN2;k�1 p+
N � l + 1

2

+
1

2

N�1

n=l

cn2;k p+
n� l + 2

2
; otherwise: (8)

Equation (6) is proved in Appendix B. Property (7) is a direct conse-
quence of (6) and leads to (8). Property (8) gives a simple procedure for
reconstructing the signal from the decomposition over FN

2;k. Indeed, if
we assume the decomposition overFN

2;k to be known, we get the coeffi-
cients cl2;k�1[p] for�1 � l � N �1, where the coefficients cN2;k�1[p]
are already known because�N;p2;k�1 belongs toF

N
2;k. If we apply the pro-

cedure k times, we get the coefficients cl2;0[p], for �1 � l � N � 1;
in particular, for l = �1, we get the signal f [p].

IV. DEFINITION OF MAXIMA LINES, SIGNAL
RECONSTRUCTION FROM EXTREMA

A. Definition of Maxima Lines

We define the maxima of the sequence cnm;k (resp. minima) as the
strictly positive (resp. negative) coefficients cnm;k[p] such that c

n
m;k[p�

1] < cnm;k[p] > cnm;k[p + 1] (resp. cnm;k[p � 1] > cnm;k[p] <
cnm;k[p + 1]). The specificity of the case m = 2 is that an extremum
at rank n arises from a unique extremum of the same nature at rank
n� 1. These extrema define curves in the time-scale space, which are
called maxima lines. The practical construction of maxima lines in this
case is explained in [2], [3], and [8] and works for any signal. On the
contrary, for m > 2, recalling that the sequence cnm;k is obtained by
correlation of cn�1m;k with a shifted version of b0m (see (5)), if cn�1m;k con-

tains a sequence of the kind 0 � � � 01

m�2

0 � � � 0 10 � � � 0 with two maxima,
the correlation with b0m will lead to a unique maximum for cnm;k , which
arises from the two extrema at rank n�1. Consequently, the maximum
at rank n is associated with two maxima at rank n � 1, which entails
different possible constructions for the maxima lines. For that reason,
we will takem = 2 for the construction of maxima lines.

B. Signal Reconstruction From Extrema When k = 1

We study here the reconstruction of the signal f from the extrema
of the sequence cn2;1 when f has zero mean without loss of generality.
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Fig. 1. Computation of the normalized reconstruction errors for three signals
with bandwidths 20–200 Hz, 100–350 Hz, 300–450 Hz, where the sampling
frequency is 1 kHz.

In such a case, the origin of the maxima lines (i.e., for n = �1) corre-
sponds to a maximum of the derivative of the signal (i.e., a change of
curvature). The sequence cN2;0[p] tends to zero whenN tends to infinity
(we do not prove it here due to the lack of space; see [8] for details).
Since c�12;0[p] = f [p], we derive using (8)

f [p] �
1

2

N�1

n=�1

cn2;1 p+
n+ 2

2
:

We define �cn2;1[p] by c
n
2;1[p] if there is an extremum in p at rank n and

zero otherwise. Let us denote gN by

gN [p] =
1

2

N

n=�1

�cn2;1 p+
n+ 2

2

as well as EN , which is the reconstruction error from extrema, by

EN =
p2Z

(f [p]� gN [p])2:

We have carried out simulations to estimate the evolution of EN for
signals with different frequency bandwidths. The signals we used in
simulations were generated through the filtering of uniform noise by
Butterworth filters with various frequency bandwidths. We notice on
the simulated signals that the reconstruction error EN decreases with
N for small N and then reaches a minimum (the corresponding N
is called N0) and finally stabilizes. The value N0 associated with the
minimal reconstruction error is larger when the frequency bandwidth
is low, since in that case, neighboring extrema are, on average, further
apart. In Fig. 1, we display the typical evolution of the square root of
EN normalized by the variance of f (i.e.,

p2 (f [p])2) for three
signals with different frequency bandwidths.

The theoretical demonstration of the behavior of EN is not simple;
we only give a numerical insight of what is happening. The error satis-
fies the induction property

EN = EN�1 �
1

2
p2

f [p] �
1

2

N�2

n=�1

�cn2;1 p+
n+ 2

2

��cN�12;1 p+
N + 1

2
+

1

4
p2

�cN�12;1 p+
N + 1

2

2

:

The decay of the error is linked to the second term on the right side of
the equality. For a small N , when f [p] � 1=2 N�2

n=�1 �c
n
2;1[p + bn +

2=2c] and �cN�12;1 [p + bN + 1=2c] are not null, most of the time, they
have the same sign. This is due to the fact that the first term has the
sign of f at p and that a maximum for cN�12;1 is more likely to occur
when f is positive (the opposite is true for a minimum). When N in-
creases the shift, bN + 1=2cmakes cN�12;1 [p+ bN +1=2c] correspond
to a minimum when it initially corresponded to a maximum, and thus,
it changes signs, whereas f [p] � (1=2) N�2

n=�1 �c
n
2;1[p + bn + 2=2c]

keeps the same sign (the reasoning is also true in the reverse case). The
effect of this change of sign is an increase of the mean square error for
a value N0 of N .

V. CONSTRUCTION OF THE ESTIMATOR OF TRANSIENTS

In this section, we first build a new nonparametric estimator of tran-
sients using the maxima lines of the decomposition (with k = 1 and
m = 2). The ranks n we consider, to build the estimator, are lower
thanN0, which are determined for each signal independently using the
reconstruction procedure detailed above. We first explain how we char-
acterize a signal with its maxima lines and, then, how to compute the
reference parameters on an interval supposed to be free of transients.
Second, we introduce the test statistics on the maxima to detect tran-
sients and estimate their localization. Finally, we recall the principle of
transient estimation with wavelet coefficients under the Gaussian hy-
pothesis.

A. Signal Characterization

As each extremum of the sequence cn2;1 belongs to a single maxima
line (see definition in Section IV-A) [2], [3], [8], we can associate with
each maxima line L in the time-scale space (where the time is indexed
by p and the scale by n), the variable DL;q , with jLj � q + 2 (where
jLj is the length of L), defined by

DL;q =
(p;n)2L;n�q

cn2;1[p]
2

�n2;1
2

2

and �n2;1 2
=

p2 �n2;1[p]
2
. The role of the normalization is

to give the same relative importance to each coefficient cn2;1
2
in the

sum (the �n2;1 are then normalized to 1 in the l2 sense).
The variableDL;q is not sufficient to properly characterize frequen-

cies of the signal. We therefore use another variable

FL;q = O(L+(q))�O(L)

where O(L) is the origin of the maxima line L, and L+(q) is the
maxima line that follows L at rank q.

B. Principle of the Estimation-Detection

We compute the variableDL;q when q � N0 (see Section IV-B for
the definition of N0) for a reference part of f assumed to be free of
transients. For any probability Pr, the empirical distribution of DL;q

provides thresholds aq and bq such that P (aq < DL;q < bq) = Pr.
For each maxima line L such that jLj � q + 2, we have the standard
choice between

H0(q) :DL;q is in [aq ; bq]

H1(q) :DL;q is out of [aq; bq]:

The variable FL;q takes integer values, and we compute its distribution
for each q � N0. Any probability Pr defines a subset A(q) of such
that A(q) = fx; P (FL;q = x) > 1� Prg. For each maxima line, we
again have the choice between

H 0
0(q) :FL;q is in A(q)

H 0
1(q) :FL;q is not in A(q):
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Fig. 2. (a) ROC curves for � = 3 and a bandwidth 20–400 Hz for ML method and wavelet methods for S = 2, S = 4 and S = 10. (b) Same, but for � = 1:5.
(c) Mean square error for � = 3 and a bandwidth 20–400 Hz for ML method and wavelet methods for S = 2, S = 4 and S = 10. (d) Same, but for � = 1:5.

To summarize, once we are given a probabilityPr, we can compute aq ,
bq andA(q),�1 � q � N0, which we use in the estimation. Note that
from a detection point of view, 1�Pr is the probability of false alarm.

We now assume that for any probabilityPr, reference featuresA(q),
aq , and bq ,�1 � q � N0 have been computed on [0; T�d], which are
considered as the reference part of the signal, where T is the transition
time, and d defines the maximum distance from the true transition T .

We build a nonparametric test to estimate the transition time using
the maxima lines. We consider the maxima lines L such that O(L) is
inside [T � d;T + d]. If jLj � q + 2, four cases may occur:

i) L satisfies H0(q)[H
0
0(q)

ii) L satisfies H1(q)[H
0
0(q)

iii) L satisfies H0(q)[H
0
1(q)

iv) L satisfies H1(q)[H
0
1(q):

We then scan the interval [T � d; T + d]. The first line L that satisfies
hypothesis ii) or iv) at rank q corresponds to a transient T1(q) = O(L),
whereas the first lineL that satisfies iii) or iv) corresponds to a transient
T2(q) = O(L). We thus have two vectors T1 and T2 for which the best
ranks q are those that maximize the probability of transition, i.e., the
probability that the line L does not correspond to the known part of
the signal defined for t � T � d. If we denote q1 (resp. q2), which is

the rank associated with T1 (resp. T2), we choose between T1(q1) and
T2(q2), taking the one with the highest probability of transition. If we
denote P ( ~T ), which is the probability of transition of ~T , the estimated
transition T̂ is

T̂ = argmax P ( ~T ); ~T 2 T1(argmax
q�N

P (T1(q)))

T2(argmax
q�N

P (T2(q))) :

As the estimated transition time is associated with a maxima line gen-
erated by an extremum of the derivative of the signal, the detected tran-
sition always corresponds to a variation of curvature of the signal.

C. Continuous Wavelet Decomposition and Estimation of Transients
in Gaussian Signals [6]

In order to make a comparison, we recall the principle of transient
estimation with wavelet coefficients. Suppose that a signal f is decom-
posed onto a family of wavelets of the kind

	s;b(t) =
1

s
	

t� b

s
; 1 � s � S :
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Fig. 3. (a) ROC curves for ML method and wavelet methods (S = 2, S = 4, S = 10) for a variation of frequency bandwidth from 20–200 Hz to 200–400 Hz.
(b) Same, but for a variation of frequency from 200–400 Hz to 20–200 Hz. (c) Mean square error for the estimation of transition for a variation from 20–200 Hz
to 200–400 Hz. (d) Same, but for a variation from 200–400 Hz to 20–200 Hz.

If f is Gaussian, Y [b] = (Ys[b] = (f(t); (1=s)	(((t� b)=s))))s�S
is a Gaussian vector with zero mean components characterized by its
covariance matrix . In such a case, Z[b] = Y [b]( )�1Y [b] is �2
distributed with S degrees of freedom [6]. As previously, we seek, for
different values of S, the first time in [T � d; T + d] when Z does
not satisfy the �2 hypothesis for any probability Pr. Consequently, the
comparison of our estimator of transients to that based on wavelet co-
efficients is easily carried out on Gaussian signals.

VI. RESULTS

The signals we consider are Gaussian white noises filtered by But-
terworth filters that are Gaussian signals to enable simple comparison
between the different methods. We study two kinds of transitions:
first, a variation of amplitude of the signal and, second, a variation
of frequency. Each signal has a sample rate of 1 kHz. The true
transition is in all cases T = 800 ms; we fix d = 10 ms. We
consider T � d very large to ensure that the reference parameters
are correctly estimated. The choice for the value of d is justified by
electromyographic (EMG) practical applications: We use the estimator
to measure EMG latency responses of muscles under stimulation
whose average value is known. Then, the interval where the transients

should be detected need not be too large. Furthermore, this practical
assumption will improve the estimator performance because choosing
a larger interval may add spurious detections that would alter the
measurement of the estimator performance. For the method based on
wavelet coefficients, we use the derivative of the normalized Gaussian
	(x) = �(x=(

p
2�) exp(�(x2=2)) to be coherent with the choice

k = 1 of our decomposition. For this method, scale selection is often
made, considering that the family of wavelets ensures a good coverage
of the frequency bandwidth of the signal [5]. We will see that this
method leads to a worse estimation of transients than that which we
propose.

A. Variation of Amplitude

The variation of amplitude is generated through a multiplication of
the signal by � at time T . We consider signals with frequency band-
widths 20–400 Hz to nearly cover the whole frequency spectrum (the
sampling rate is 1 kHz). For these signals, we build ROC curves (de-
tection versus false alarm) for � = 3 and � = 1:5, for our model (ML)
and for the wavelet method for S = 2, S = 4 and S = 10 and the cor-
responding mean square errors (the curves are build from 500 Monte
Carlo runs). The results are depicted in Fig. 2 in which we notice that
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the transient estimation (second row of the figure) is approximately in-
variant with respect to the probability of false alarm. In fact, with the
ML method, when a transient is detected at rank n, we can come back
to its initial location (i.e., rank n = �1) following the corresponding
maxima line. On the contrary, with the wavelet methods, the wavelet
coefficients at scale s and time t mix the information around t, intro-
ducing a bias in the estimation that is more important when S is large.
We also note that in the studied cases, the improvement of the estima-
tion is not made to the detriment of the detection since the ROC curves
for the ML method and for the wavelet method are very similar.

B. Variation of Frequency

We investigate the estimator of transients when the latter arises from
a variation of frequency. At time T , we change the frequency band-
width of the Butterworth filter. We study two cases: the first one is
when the bandwidth varies from 20–200 Hz to 200–400 Hz, whereas
the second is the opposite. We build ROC curves of the detector as-
sociated with the ML method and the wavelet method (for S = 2,
S = 4, S = 10) and the mean square errors to evaluate the perfor-
mance of the estimators (the curves are derived from 500 Monte Carlo
runs). The results are very similar to those obtained for a variation of
frequency, i.e., while the estimator computed from wavelet coefficients
are very sensitive to the probability of false alarm, the performance of
the estimator based on maxima lines is invariant with respect to this
parameter (see Fig. 3). For the transition from 200–400 Hz to 20–200
Hz, we notice that the ML method is slightly less performant in terms
of detection than those based on wavelet coefficients; the reason is that
d is small compared with the lowest frequency (20 Hz), and therefore,
few maxima lines have their origin in the interval [T � d; T + d].

VII. CONCLUSION

The aim of this study was to introduce a new estimator of transients.
The study of the maxima lines associated with the decomposition in-
troduced by Berkner [2] on Gaussian signals suggested specific scales
that are useful for the construction of a new estimator of transients. The
latter is not parametric and mixes two characteristics to take both am-
plitude and frequency variations into account. It is a better estimator
than the estimator based on wavelet coefficients computed using the
CWT without any loss of detection performance. Another advantage
of the method is that the pertinent scale selection is automatic, which
is not the case for the method that uses wavelet coefficients. Future

work should consist of applying the proposed estimator of transients
to the non-Gaussian and nonstationary cases. We also have to see the
influence of maxima lines of a higher degree (i.e., k > 1) on the esti-
mation performance. Another direction for future work would also be
to investigate the impact of noise on the estimator performance.

APPENDIX A
PROOF OF THEOREM 1

The proof is made by induction on k. We distinguish the cases m
even andm odd. Ifm is odd, we can write the equation at the bottom
of the page, using a first-order approximation of the exponential in 0.
When m is even, we have the first equation at the bottom of the next
page. We now assume that at rank k

bnm;k[p] �
6

�(n+ 1)(m2
� 1)

� exp
6x2

(n+ 1)(1�m2)

(k)

p�
�(n+ 1) + k

2

with � = 1 if m is odd and 0 otherwise. We first consider the case m
odd.Note that the derivative at rank k of exp((6x2)=((n+1)(1�m2)))
can be written as P ((x=((n+1)(1�m2))) exp(((6x2)=((n+1)(1�
m2))), whose derivative is

1

(n+ 1)(1�m2)
P 0 x

(n+ 1)(1�m2)

+
12x

(n+ 1)(1�m2)
P

x

(n+ 1)(1�m2)

� exp
6x2

(n+ 1)(1�m2)
:

At rank k + 1, we have the second equation at the bottom of the next
page, using a first-order approximation of the exponential, and then

bnm;k+1[P ] �
6

�(n+ 1)(m2
� 1)

exp
6(p� k+1

2
)2

(n+ 1)(1�m2)

�

1

(n+ 1)(1�m2)
P 0

p� 1+k
2

(n+ 1)(1�m2)

bnm;1[p] = bnm[p] � bnm[p� 1] �
6

�(n+ 1)(m2
� 1)

� exp
6p2

(n+ 1)(1�m2)
� exp

6(p� 1)2

(n+ 1)(1�m2)

=
6

�(n+ 1)(m2
� 1)

exp
6 p� 1

2

2

(n+ 1)(1�m2)

� exp
6(p� 1

4
)

(n+ 1)(1�m2)
� exp

�6(p� 3
4
)

(n+ 1)(1�m2)

�

6

�(n+ 1)(m2
� 1)

12p� 6

(n+ 1)(1�m2)
exp

6(p� 1
2
)2

(n+ 1)(1�m2)

=
6

�(n+ 1)(m2
� 1)

exp
6x2

(n+ 1)(1�m2)

0

p�
1

2
:



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 6, JUNE 2005 2257

+
12p� 6(k + 1)

(n+ 1)(1�m2)
P

p� 1+k
2

(n+ 1)(1�m2)

�
6

�(n+ 1)(m2 � 1)

� exp(�
6x2

(n+ 1)(m2 � 1)
)

(k+1)

p�
k + 1

2
:

We now deal with the casem even, for which we have the equation at
the top of the next page. This completes the proof of Theorem 1.

APPENDIX B
PROOF OF PROPOSITION

Equation (6). We start with the case n + k even. Since

�
n
2;k[p] = b

n
2;k p+

n+ 1 + k

2
= b

n
2;k p+

n+ k

2

=
1

2
b
n�1
2;k p+

n+ k

2
+ b

n�1
2;k p� 1 +

n+ k

2

=
1

2
�
n�1
2;k [p] + �

n�1
2;k [p� 1]

if we apply (5), we get

c
n�1
2;k =

1

2
c
n�1
2;k [p] + c

n�1
2;k [p+ 1] :

The demonstration for the case n + k odd is identical. We now prove
the second equality of (6) when n + k is even. Since we have

�
n
2;k[p] = b

n
2;k p+

n+ 1 + k

2
= b

n
2;k p+

n+ k

2

= b
n
2;k�1 p+

n+ k

2
� b

n
2;k�1 p� 1

n+ k

2

=�
n
2;k�1[p+ 1]� �

n
2;k�1[p]

by applying (6), we get

c
n
2;k[p] = c

n
2;k�1[p� 1]� c

n
2;k�1[p]:

The demonstration when n + k is odd is identical.
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Closed-Form Correlation Functions of Generalized
Hermite Wavelets

Giuseppe Thadeu Freitas de Abreu, Member, IEEE

Abstract—A closed-form expression is given for the correlation functions
of generalizedHermite wavelets, constructed from an also-generalized defi-
nition of Hermite polynomials. Due to their Gaussianity, these wavelets can
be used as a tool in the analysis or design of systems involving nonsinusoidal
wavelets as well as tomodel impulsive waveforms found in real-world appli-
cations and signal processing problems. As such, the formula is potentially
applicable to various areas of science.

Index Terms—Correlation functions, Hermite expansions, Hermite
wavelets.

I. INTRODUCTION

Due to its Gaussianity, Hermite wavelets (which are often referred to
as Hermite functions in the mathematics literature) have proved to be
an increasingly important tool in signal processing, with application to
various areas of science ranging from image coding and compression
[1], to biomedical engineering [2], to neural networks [3], to wireless
communications [4]–[6], to high-definition radar systems [7].
Several fundamental issues in such applications depend on the corre-

lation properties of the set of wavelets employed. Hermite wavelets are
constructed from theHermite polynomials throughmultiplication by an
exponential decay term, such that different choices of decay coefficient
and Hermite polynomials result in different wavelet sets. At least two
different definitions of Hermite polynomials are widely encountered
in the mathematics literature [8]–[11], and the Hermite wavelets con-
structed from either of these definitions are the most commonly found
in engineering applications [1]–[4], [12], [13].
This is, in part, because these particular Hermite wavelets have the

particular characteristic of forming complete (density-one) sets of or-
thonormal functions but also because the correlation functions of these
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