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Human brain networks have topological properties in commonwith
many other complex systems, prompting the following question:
what aspects of brain network organization are critical for distinctive
functional properties of the brain, such as consciousness? To address
this question, we used graph theoretical methods to explore brain
network topology in resting state functional MRI data acquired from
17 patients with severely impaired consciousness and 20 healthy
volunteers. We found that many global network properties were
conserved in comatose patients. Specifically, therewas no significant
abnormality of global efficiency, clustering, small-worldness, modu-
larity, or degree distribution in the patient group. However, in every
patient, we found evidence for a radical reorganization of high
degree or highly efficient “hub” nodes. Cortical regions that were
hubs of healthy brain networks had typically become nonhubs of
comatose brain networks and vice versa. These results indicate that
global topological properties of complex brain networks may be
homeostatically conserved under extremely different clinical condi-
tions and that consciousness likely depends on the anatomical loca-
tion of hub nodes in human brain networks.
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Brain networks have traditionally been analyzed in anatomical
space, but there has also been growing recent interest in

considering the topological aspects of brain networks. Topological
metrics characterize the relationships between elements of a sys-
tem regardless of their physical location. From neuroimaging data,
it has been possible to model large-scale human brain networks as
“brain graphs” of regional cortical and subcortical nodes (each in
the order of cubic centimeter volume), with edges or lines drawn
between nodes to represent their functional or anatomical con-
nectivity (1, 2). Topological analysis of human brain graphs has
found that they are generally small-world, modular, and comprise
a number of highly connected hub nodes (3). “Hubness” can be
measured in many ways; for example, nodes may be defined as
hubs because they have an unusually high degree, or centrality, or
importance for intermodular connectivity (4). Many other com-
plex systems, including high-performance computer chips (5)
and transportation and social networks, have similar topological
attributes; these complex graphical properties also seem to be
qualitatively well conserved in nervous systems across scales of
space and time and in different species (3). Thus, it is plausible
that many aspects of brain network organization are not specific to
the human brain and are therefore not, presumably, critical to the
distinctive functions of the human brain, such as normal con-
sciousness. To frame the point as a question: if brains are part of
a large class of information processing systems that share certain
complex topological features in common, what can we continue to
say is special about the human brain? Or which specific aspects of

brain network organization really matter in terms of supporting
special aspects of human brain function such as consciousness?
Neuroimaging methods, such as PET and task-related func-

tional MRI (fMRI), have previously been used to demonstrate
different patterns of functional connectivity depending on level
of consciousness in comatose patients admitted to critical care
departments following cardio-respiratory arrest or traumatic brain
injury (6–9). A global disconnection syndrome between higher-or-
der association cortices and primary cortical areas was observed in
vegetative state patients, whereas the preservation of large-scale
cortical networks associated with language and visual processing
was noted in minimally conscious patients (8, 9). Furthermore, the
thalamocortical connectivity was found to be restored in a few
patients who recovered consciousness after being in a chronic veg-
etative state (10). Connectivity of the medial parietal cortex (pre-
cuneus) has been proposed as a biomarker that best differentiates
between healthy volunteers and patients with consciousness dis-
orders (7). The precuneus is a component of the default mode
network (DMN), which is hypothetically related to self-conscious-
ness (11). DMN connectivity has been investigated in non-
communicative brain-damaged patients (12–14), and a relationship
was found between the amount of connectivity in the DMN and the
degree of clinical impairment of consciousness (14). However, to
date, there has been no analysis of global or nodal metrics of brain
network topology in patients with impaired consciousness.
We measured functional brain graphs in 17 patients with se-

verely impaired consciousness and 20 healthy volunteers matched
approximately for sex and age with the patient group. At the time
of scanning, the comatose patients did not require assisted ven-
tilation, but they were deeply unconscious as a result of a range of
major acute medical events (Table S1). We estimated functional
connectivity between each pair of 417 brain regions in each fMRI
dataset using wavelet analysis to focus on correlated time series
activity in the low-frequency interval 0.02–0.04 Hz. From these
individual association matrices, we constructed binary adjacency
matrices or graphs over a range of connection densities. We first
explored the global properties of these connectivity matrices and
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brain graphs and then investigated differences between comatose
patients and healthy volunteers at the level of individual nodes.

Results
Global Connectivity and Network Topology. There were no signifi-
cant differences between groups on any global measure of
functional connectivity or network topology. The global mean
wavelet correlation, a band-passed (0.02–0.04 Hz) measure of
the strength of functional connectivity between brain regions on
average over all pairs of regions in the brain, was about 0.3 in
both groups (Fig. 1A). The functional networks in both groups
also had similar global efficiency and clustering (Fig. 1; Fig. S1).
Both healthy volunteers and comatose patients demonstrated
the characteristically “small world” property of high clustering
combined with high global efficiency (normalized by comparison
with the clustering and efficiency of random networks with the

same number of nodes, connection density and degree distribu-
tion; Fig. 1 B and C). Networks were also modular in both
groups, and there was no significant difference in global modu-
larity between groups (Fig. 1D). There were also no differences
between groups in global averages of betweenness centrality or
the participation coefficient (Fig. S1). Finally, the probability
distribution of nodal degree (the number of edges connecting
each node to the rest of the network) was best fit by an expo-
nentially truncated power law in each individual dataset, and
there were no significant differences between groups in the de-
gree distribution parameters (α, the power law exponent; β, the
exponential cutoff) (Fig. 1E; Fig. S1). In short, despite the
marked difference in clinical state between patients and com-
parison subjects, their brain networks had conserved global
properties of small-worldness, modularity, and fat-tailed degree
distributions signifying the existence of high-degree hub nodes.

Nodal Connectivity and Network Topology. Many measures of
connectivity and network topology can also be estimated from
each individual node in the network, thus allowing a finer-grained
analysis of changes in brain function associated with clinically
impaired consciousness. The strength of functional connectivity,
efficiency, clustering, degree, betweenness centrality, and partic-
ipation coefficient were all estimated for each node on average
over all subjects in each group. As shown in Fig. 2, there were
significant differences between groups in these measures at sev-
eral locations in the cortex. In some regions, such as occipital
cortex and precuneus, the patients had significantly decreased
efficiency, clustering, and degree, whereas these measures were
significantly increased in patients in other regions such as lateral
parietal and prefrontal cortex. This pattern of abnormally in-
creased or decreased nodal properties could be summarized by
plotting, for a given metric, the mean value at each node in the
healthy volunteer group versus the difference between patient
and volunteer groups at each node (Fig. 2A). We defined a new
measure, denoted κ, as the gradient of a straight line fitted to these
data. This coefficient can be called a hub disruption index, as it
measures the way the network’s nodes are radically reorganized in
comparison with healthy volunteers, with increased hubness of
some regions and decreased hubness of others (see SI Text for
details on estimation of the hub disruption index). For eachmetric
considered, this analysis demonstrated a significant negative hub
disruption index, κ∼ − 1; in other words, the nodes that had the
highest hubness scores in healthy volunteers showed the greatest
reduction in patients, whereas the nodes that had the lowest
hubness scores in healthy volunteers showed the greatest increase
in patients. Importantly, this was true for all of the tested brain
connectivity and network metrics, including the unthresholded
wavelet correlation measures of functional connectivity and the
topological measures on thresholded binary graphs (degree,
global efficiency, clustering, betweenness centrality, and partici-
pation coefficient). For example, this disruption of nodal topology
is clearly represented by the analysis of degree: some of the
highest-degree nodes in the healthy volunteer network showed
the greatest reduction of degree in patients, whereas some of the
lowest-degree nodes in the volunteer network showed the greatest
increase of degree in the patients (Fig. 2). Comatose patients, on
average, had abnormally reduced hubness of nodes in the occip-
ital cortex and abnormally increased hubness of nodes in the
prefrontal and lateral parietal cortex. This between-group dif-
ference in mean network topology was observed in the context of
differences between individual patients in the anatomical loca-
tions of topologically disrupted network nodes (Fig. S2). More-
over, we found that this disrupted hub profile was not only evident
in the comparison between group mean networks but was also
consistently demonstrated in each individual patient’s network.
To show this, we estimated the hub disruption index for each in-
dividual patient (and each of the connectivity and topological

-0.8

-0.4

 0

 0.4

 0.8

fu
n

ct
io

n
al

 c
o

n
n

ec
ti

vi
ty

A

 0.1

 0.2

 0.3

 0.4

g
lo

b
al

 e
ff

ic
ie

n
cy

B

 0.3

 0.4

 0.5

 0.6

cl
u

st
er

in
g

C

 0.3

 0.4

 0.5

 0.6

 0.7

m
o

d
u

la
ri

ty

D

-1

-8

-6

-4

-2

 0

 0  10  20  30  40  50  60  70  80  90

lo
g

 p
ro

b
ab

ili
ty

degree

E

Fig. 1. Global functional connectivity and topological properties of brain
networks in healthy volunteers (white) and comatose patients (gray). (A)Mean
wavelet correlation, a measure of functional connectivity on average over all
pairs of regions in the brain. (B) Global efficiency, a topological measure of
integrative information transfer inversely related to characteristic path length.
(C) Clustering, a topological measure of segregated information transfer. (D)
Maximum modularity, a global measure of the near-decomposability of the
network into a community structure of sparsely interconnected modules. (E)
Degree distribution, the probability distribution of the degree of a node in the
network (patients in red and healthy volunteers in black). Corresponding
results for other global metrics (betweenness centrality, participation co-
efficient, degree distribution parameters), other wavelet scales, spatial par-
cellation scales, and graph connection densities are in Figs. S1 and S6–S9.
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metrics). As shown in Fig. 3, all patients demonstrated disruption
of nodal properties compared with the volunteer group mean,
summarized by a negative hub disruption index, κ< 0. When the
same analysis was applied to each individual in the healthy vol-
unteer group, the gradient of the fitted lines was typically close to
zero, κ∼ 0. There were therefore highly significant between-group
differences in this measure of hub profile disruption (Fig. 3). The
P values obtained from t tests for between-group differences in κ
were less than 10−5 for all connectivity and topological metrics
(Fig. S3). There was also a statistically significant between-group
difference by a permutation test of κD (P< 0:001; Fig. S4).

Global Modularity and Community Structure. Modularity is a global
measure of how well a network can be decomposed into a set of
sparsely interconnected (but densely intraconnected) modules.
Although this global measure was unchanged in coma patients
(Fig. 1D), we hypothesized that the community structure could
still be perturbed in coma, in terms of the identity of the nodes
making up the different modules. To test this, we used normalized
mutual information (NMI) to quantify the pairwise similarity
between themodular partitions or community structures obtained
for different subjects (15, 16). The mean NMI between a pair
of two healthy networks was significantly higher than the NMI

between a pair of two patients or between a pair of one patient
and one volunteer. This indicates that community structure was
more variable in the patient group than in the healthy group and
more similar between different individuals in the healthy volun-
teer group than between healthy and comatose individuals (be-
tween-group permutation test of NMI, P< 0:00001). In short, at
a nodal level, the community structure of brain functional net-
works is reorganized in coma even though the maximum value of
global modularity is not different on average between the co-
matose and healthy groups. This is also illustrated (Fig. 4) by
comparing the modular decomposition of a network constructed
by averaging the correlation matrix over all healthy volunteers
with the modular decomposition of a single representative vol-
unteer. The apparent similarity of community structure between
the healthy individual and the healthy group mean contrasts with
the evident differences in the anatomical localization of modules
found in a representative coma patient.

Discussion
We used noninvasive (fMRI) neuroimaging to measure brain
functional connectivity and network properties in 17 patients in
a comatose state as a result of an acute brain injury. A key theo-
retical and clinical question of interest was the nature of any topo-
logical abnormality in the brain network organization of the patients
that might relate to their state of severely impaired consciousness
and therefore perhaps shed light on which aspects of normal brain
network organization might be critical for consciousness.
The first main finding was the absence of any evident difference

between the groups of comatose patients and healthy volunteers
on any global measure of functional connectivity or network
topology. In terms of global efficiency, clustering, modularity,
betweenness centrality, participation coefficient, and degree dis-
tribution parameters, there were no significant differences be-
tween the two groups. These results demonstrate that global

A

B C

Fig. 2. Hub disruption of functional networks in comatose patients. (A) The
mean degree of each node in the healthy volunteer group hhealthyi (x axis) is
plotted versus the difference between groups in mean degree of each node
hcomai− hhealthyi (y axis). Normal hub nodes have a highmean degree in the
healthy group and an abnormal reduction of degree in the comatose group,
e.g., precuneus or fusiform gyrus, whereas nodes that are normally nonhubs
have a low degree in healthy volunteers and an abnormal increase of degree
in patients, e.g., angular gyrus. The slope of the (red) line fitted to the data is
the hub disruption index, κD ∼ − 0:8; using the same color scale as in B, the
color of the points denotes the difference between groups in mean degree of
each node. (B) Cortical surface representation of the difference in mean de-
gree between patient and volunteer groups; red denotes increased degree,
on average, in patients compared with healthy volunteers; blue denotes ab-
normally decreased degree in comatose patients. (C) Cortical surface repre-
sentation of nodes that demonstrated significant between-group difference
in nodal degree; permutation test, two-tailed P < 0:003; red denotes signifi-
cantly increased degree and blue denotes significantly decreased degree in
the patients on average. Corresponding results for othermeasures of hubness
(functional connectivity, global efficiency, clustering, betweenness centrality,
and participation coefficient) are shown in Figs. S3 and S6; for further detail
on the estimation of the hub disruption index, see Fig. S4.

DC

A B

Fig. 3. Individual comatose patients consistently demonstrate hub disrup-
tion of functional brain networks. (A and C) The hub disruption indices κD and
κS were estimated for each patient as the gradient of a straight (red) line
fitted to the scatterplots of the individual differences in nodal degree (D) or
functional connectivity (S) vs. the healthy group mean nodal degree or con-
nectivity. The black horizontal line shows the equivalent function estimated
for the individual differences of each healthy volunteer vs. the healthy group
mean (error bars = SD). (B and D) Boxplots of the individually estimated hub
disruption indices for the healthy volunteer group (white) and the comatose
patient group (gray). For both κD and κS, the healthy group mean is approx-
imately zero, whereas for the patient group, it is closer to −1. The between-
group differences in κ are significant by t test (P <10−5) and by permutation
test (P <0:001; Fig. S4). Corresponding results for other hubness measures are
shown in Fig. S3.
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fMRI connectivity and network properties are unlikely to be
useful biomarkers of clinical status in patients following acute
brain injury. To put it another way, global functional network
properties are homeostatically conserved under the very different
clinical conditions of a patient in deep coma following a major
brain injury versus a healthy volunteer.
In a sense, this is not surprising. The complex topological

properties of human brain networks, such as small-worldness,
modularity, and fat-tailed degree distribution, are known to be
qualitatively similar to those of many other biological, social, and
computational networks (3, 17, 18). At the level of global network
description, the brain has a number of organizational features in
common with other, substantively diverse but topologically iso-
morphic, complex systems. Therefore, it is not unexpected that
brain networks should conserve at least qualitatively similar to-
pological properties under different clinical conditions. Indeed
there are prior data demonstrating conservation of fundamental
network properties—such as small-worldness and modularity—
across a wide range of clinical disorders causing cognitive im-
pairment, including Alzheimer’s disease and schizophrenia. Nev-
ertheless, it is notable that in most network studies of clinical
disorders, there have been some quantitative differences between
patient and control groups in the value of global network param-
eters. For example, patients with Alzheimer’s disease have ab-
normally reduced global efficiency (19), whereas patients with
schizophrenia have abnormally reduced clustering (20). In con-
trast, the comatose patients in this study were not quantitatively
distinguishable from the normal comparison group on any global
measure of network organization.
However, when we examined network organization at a finer-

grained level of analysis, focusing on key properties of individual
cortical nodes such as their degree, we found consistent evidence
for a highly significant abnormality in the comatose patients. We

can summarize this network abnormality as a disruption of hub
rank order. Brain regions, such as fusiform gyrus and precuneus,
which were high-degree hubs in the normal brain networks, became
low-degree nonhubs in the comatose brain networks, whereas
regions, such as angular gyrus, which were low-degree nonhubs in
the normal group became high-degree hubs in the patient group.
This disruption of the order of importance of specific cortical nodes
was demonstrated not only for degree but also for nodal connec-
tivity strength, clustering, and efficiency, and it was statistically
significant not only at the level of between-group mean compar-
isons but also at the level of each individual patient compared with
the control group mean. There was a parallel finding in terms of
modularity: the global measure of modularity was not significantly
different between groups, indicating that brain networks could be
equally well decomposed into a set of modules in both patients and
healthy volunteers, but the anatomical identity of the nodes com-
prising specific modules was markedly abnormal, and abnormally
variable, in the comatose patients.
Consistent with this general principle of hub rank disruption,

a previous fMRI study has advocated abnormal reduction in
functional connectivity of the precuneus (normally a hub) as
a biomarker for brain functional status after acute brain injury (7).
We found a significantly reduced degree of the precuneus, a key
region in coma patients, whose activity is related to the level of
consciousness (14) and whose metabolism was partially restored
in the rare patients that recover consciousness after being in
a chronic vegetative state (21). However, our finding that the
reduced importance of normal hubs is approximately balanced by
the increased importance of normal nonhubs is unique in the
context of coma studies. We found abnormally increased impor-
tance of cortical nodes in four main regions: the orbitofrontal
cortex, the inferior parietal lobe extending to the angular gyrus
and to the supramarginal gyrus, the temporal poles, and the

Mean Healthy 
Volunteers 

One Healthy 
Volunteer 

One Patient 

Within-group Comparison 
of Healthy Volunteers  

Within-group 
Comparison of Patients 

Between-group 
Comparison 

Between-group 
Comparison 

NMI = 0.309 ± 0.003 

NMI = 0.253 ± 0.004 

NMI = 0.243 ± 0.003 

NMI = 0.243 ± 0.003 

Fig. 4. The community structure of functional networks is abnormally variable between comatose patients. (Right) Each matrix element represents the
similarity between the community structure (modular decomposition) for a pair of participants, as measured by normalised mutual information (NMI). The
first 20 rows/columns represent healthy volunteers, whereas the next 17 rows/columns correspond to the comatose patients; insets show group means (and
SEMs) for NMI. The NMI values on the diagonal were set to zero (instead of their natural value of 1) for clarity of visualization. (Left) Cortical surface rep-
resentations of the community structure of the healthy volunteer group on average (Top), a single representative healthy volunteer (Middle), and a single
representative comatose patient, with median modularity in the patient group (Bottom). It is evident that the normal affiliation of specific cortical regions to
topological modules (color coded on the cortical surface) is extensively disrupted in the comatose patient.
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amygdala. There have been no prior reports of abnormally in-
creased connectivity or degree of individual cortical areas in
patients with acute brain injury, but such hub reorganizations have
been previously described in Alzheimer’s disease (where con-
nectivity between frontal nodes is increased) (19, 22), stroke (23),
and schizophrenia (20).
To return to the motivating question, what does this pattern of

results tell us about functional brain network organization in
relation to normal states of consciousness? It suggests that global
topological properties, such as small-worldness and modularity,
are not sufficient to describe the brain network organization
required for consciousness (13, 24). In addition, the more spe-
cific details of how topological features such as network hubs are
mapped to particular anatomical areas of cortex are likely to be
important in understanding the brain substrates of consciousness
more completely. Again, this is arguably not too surprising. The
optimal function of an engineered network, such as a computer
circuit, is not specified entirely by the global topological statistics
of its wiring diagram, but is also dependent on a spatially precise
mapping of topological features to the circuit board (5, 25). As
we have shown here, the normal anatomical location of network
hubs and modules is radically reorganized in comatose patients,
implying that a specific topological-to-spatial mapping is critical
for functional network organization for conscious processing.
How can we explain the conservation of global network prop-

erties, and the anatomical reorganization of local network prop-
erties, in relation to the clinical status of the patients participating
in this study? The patients were all scanned within a few days of an
acute brain injury associated with severe loss of consciousness,
due to a number of causes, most often cardiorespiratory arrest.
There is evidently some diversity between individual patients in
the anatomical locations of affected hubs and nonhubs (see Fig.
S2 for representative networks of four individual patients). There
was also some heterogeneity in the comatose group in terms of
clinical outcome and the immediate cause of coma. However, the
power of this dataset to relate individual differences in the cause
of coma to differences in network topology and, ultimately, to
differences in outcome is limited. For example, level of con-
sciousness was measured using a standardized instrument [Wes-
sex Head Injury Matrix (WHIM) scale] on only one occasion, and
most patients were rated in a narrow range at or close to the
minimum score (signifiying deep coma) on this scale (Table S1).
Correlations between WHIM score and network measures, in-
cluding the hub disruption index, were not statistically significant,
but this could reflect lack of dynamic range and serial measures in
the clinical profiling of these patients.
It is notable that all of the patients experienced an acute crisis

of extreme cerebral hypoxia or hypoglycemia, and it is known
from prior studies that functional network hubs tend to be
metabolically more expensive, e.g., having greater rates of glu-
cose metabolism, than nonhubs (26). Thus, the consistent finding
across patients that the connectivity of hub nodes was abnor-
mally reduced may reflect the putatively greater vulnerability of
hub nodes to metabolic or oxidative stress. After acute brain
injury, prior work suggests that two main recuperative phenom-
ena occur (27, 28). The first process is initiated soon after injury
and relies on the GABAergic disinhibition of secondary path-
ways between undamaged brain regions that were not used
during normal functioning of the brain (27, 29). The second
process occurs later after the injury, and it relies on the growth of
new axons (10). It is known from prior modeling studies (30) that
functional connectivity measured over longer periods of time
more closely approximates the underlying anatomical connec-
tivity or wiring of the system. Given the relatively long period of
the resting-state fMRI measurements in this study (20 min), it
might be argued that the functional network changes reflected
underlying changes of anatomical connectivity. However, we re-
peated the fMRI analysis using only the first half of each time

series and replicated the key findings of conserved global proper-
ties and disrupted hub profiles even when the duration of the
fMRI measurements was much reduced (Fig. S5). For this reason,
and also because the time interval between onset of coma and the
timing of the fMRI scan was short relative to the time interval
required for axonal growth (Table S1), we infer that the emergence
of new hubs in anatomical regions that were not so topologically
important before the injury represents an immediate, perhaps
interneuronally mediated, response to brain injury. How this nodal
disruption is constrained by homeostasis of global network
parameters remains an open question for further investigation.
The study raises a number of other methodological issues. The

number of patients is not large, and it is possible that the lack of
significant between-group differences in global network properties
is a type 2 error reflecting inadequate statistical power. However,
we note that the sample size was adequate to detect highly sig-
nificant differences in nodal network properties in the patients
compared as a group and individually with the group of healthy
volunteers. There has been recent interest in the confounding
effects of small amounts (<0.1 mm) of head movement on meas-
ures of functional connectivity in developmental and clinical fMRI
studies (31). However, we excluded data not satisfying prior cri-
teria for unacceptable head movement; we applied standard pro-
cedures for movement correction by realignment and regression;
and post hoc, we demonstrated that there were no significant
differences between groups in estimated movement parameters,
and there were no significant correlations between small, high-
frequency residual movements (framewise displacements) and
first-order differences in the movement-corrected fMRI time se-
ries (31). We therefore consider it unlikely that the observed dif-
ferences are attributable to differences in head movement. More
generally, there could be other differences between the groups,
such as their tendency to maintain eyes closed during scanning,
thatmight affect the pattern of results without being attributable to
altered level of consciousness. Reasonable choices of fMRI pre-
processing options and network parameters can havemajor impact
on the results of functional connectivity and network analysis. We
therefore explored extensively the impact of various other meth-
odological factors on the pattern of results: the key findings were
consistent for all connectivity and topological metrics considered
and remained robust to reasonable variation of wavelet (fre-
quency) scale, spatial parcellation scale (number of network
nodes), and connection density (number of network edges) (see SI
Text and Figs. S6–S9 for details).

Materials and Methods
Subjects. Twenty-five patients in a coma were scanned (age range, 21–82 y;
9 men). Data on eight patients were subsequently excluded because of
unacceptable degrees of head movement (see SI Text for details). The coma
severity for each patient was clinically assessed using the 62 items of the
WHIM scale: scores range from 0, meaning deep coma, to 62, meaning full
recovery (32). The patients were scanned a few days after major acute brain
injury, when sedative drug withdrawal allowed for spontaneous ventilation.
Therefore, all of the patients were spontaneously ventilating and could be
safely scanned at the time of fMRI. The causes of coma were different be-
tween patients: 12 had cardiac and respiratory arrest due to various causes; 2
had a gaseous cerebrovascular embolism; 2 had hypoglycemia; and 1 had
extracranial artery dissection. Six months after the onset of coma, 3 patients
had totally recovered, 9 patients had died, and 5 patients remained in
a persistent vegetative state (Table S1). The normal control group comprised
20 healthy volunteers matched for sex (11 men) and approximately for age
(range, 25–51 y) to the group of patients. This study was approved by the
local Research Ethics Committee of the Faculty of Health Sciences of Stras-
bourg on October 24, 2008 (CPP 08/53) and by the relevant healthcare au-
thorities. Written informed consent was obtained directly from the healthy
volunteers and from the next of kin for each of the patients.

fMRI Data Acquisition, Preprocessing, and Data Analysis. fMRI data were re-
corded while subjects lay quietly at rest in the scanner for 20 min. Gradient
echo echoplanar imagingdata sensitive tobloodoxygenation level-dependent
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(BOLD) contrast were acquired using a 1.5-T MR scanner (Avanto; Siemens,
Erlangen,Germany)with the followingparameters: relaxation time=3 s, echo
time = 50 ms, isotropic voxel size = 4 × 4 × 4 mm3, 405 images, and 32 axial
slices covering the entire cortex. The resting-state fMRI data were pre-
processed using SPM8 software (www.fil.ion.ucl.ac.uk/spm). For each subject,
the data were corrected for head motion and then coregistered with each
subject’s T1-weighted structural MRI. Time series data were not spatially
smoothed and were not corrected for the global mean time series by re-
gression (33). The data were quality controlled for headmovement and other
possible artifacts: eight images were excluded at this stage for poor quality
(see SI Text for details). The structural MRI was segmented into gray matter,
white matter, and nonbrain components and then normalized to the Colin27
template image (34) using the nonlinear registration method DARTEL (dif-
feomorphic anatomical registration using exponentiated Lie algebra) (35).
This registration provides a deformation field image that was then used to
map the fMRI datasets to a customized parcellation image based on the au-
tomated anatomical labeling (AAL) template image (36) but further sub-
divided into 417 anatomically smaller regions (nodes) with homogeneous
sizes (37). Regional mean time series were estimated by averaging the fMRI
time series over all voxels in each parcel, weighted by the proportion of gray
matter in each voxel of the segmented structural MRIs and corrected for head
movement by regression on the time series of estimated head translations
and rotations. We estimated the correlations between Daubechie’s wavelet
coefficients of the 86,736 possible pairs of the N= 417 cortical and subcortical
fMRI time series extracted from each individual dataset (1). We focused our
analysis on the scale 3 wavelet correlation matrices that represented func-
tional connectivity in the frequency interval 0.02–0.04 Hz. The strength of
functional connectivity was estimated for each node as the average of its
wavelet correlations with all other nodes in the network. The absolute
wavelet correlation matrices were thresholded, over a range of threshold
values, to generate binary undirected graphs with connection density
(number of edges proportional to themaximum possible number of edges) in
the range 2.5–42.5%. The following topological metrics were estimated at

each node of each individual graph: degree, efficiency, clustering, be-
tweenness centrality, and participation coefficient. The global average of
these metrics was estimated over all nodes in each network. The global
modularity and the degree distribution were also estimated for each graph
(see SI Text and refs. 3 and 38 for more details on these metrics). Global and
nodal statistics were compared between groups by t tests or by permutation
tests. To control the multiple comparisons by t tests for each nodal metric,
we assigned statistical significance to nodes where P < 0:003; at this level of
significance, we expect less than one false-positive test per network. To
summarize the abnormal profile of nodal connectivity and topological met-
rics in patients compared with the healthy volunteer group, we defined the
hub disruption index, κ. As shown in Fig. 2 and Fig. S4, κ is the gradient of
a straight line fitted to a scatterplot of the nodal property of interest, e.g.,
degree, in an individual participant minus the same nodal property on aver-
age over all of the healthy volunteers vs. the mean nodal property in the
healthy group. For comatose individuals, this gradient was negative, in-
dicating that nodes with a high degree (or other hub-like properties) in the
healthy brain network were less topologically important in the patients,
whereas nonhub nodes in the healthy brain networks were more topologi-
cally important in the patients (Figs. S3 and S6). Network analysis was
implemented in an open source, R-based software library, called brainwaver,
which is freely downloadable at http://cran.r-project.org. For visualization,
we used Caret v5.61 software (39) to make cortical surface representations of
nodal connectivity and topological metrics.
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