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Using the multivariate long memory �LM� model and Taylor expansions, we find the conditions for conver-
gence of the wavelet correlations between two LM processes on an asymptotic value at low frequencies. These
mathematical results, and a least squares estimator of LM parameters, are validated in simulations and applied
to neurophysiological �human brain� and financial market time series. Both brain and market systems had
multivariate LM properties including a “fractal connectivity” regime of scales over which wavelet correlations
were invariantly close to their asymptotic value. This analysis provides efficient and unbiased estimation of
long-term correlations in diverse dynamic networks.
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I. INTRODUCTION

A remarkable recent development in complexity science
has been the growing awareness that superficially very dif-
ferent systems may share important physical principles in
common �1�. For example, social, infrastructural, metabolic,
and neural networks have all been shown to demonstrate
small-world topological properties of high clustering with
short path length �2–4�. Some of these networks have also
been shown to share key distributional, hierarchical, or eco-
nomical properties �5–7�. Here we draw attention to another
aspect of complex network organization that seems likely to
be general to many apparently different dynamic systems—
namely, fractal connectivity—defined as convergence of the
wavelet correlations between long memory processes on an
asymptotic value over a range of low frequency scales.

The paper is structured in the following way. In Sec. II,
we define a multivariate long memory �LM� model and de-
scribe how the wavelet transform can be used to represent
the covariation between two LM processes as a spectrum of
scale-dependent �or frequency specific� wavelet correlations.
In Sec. III, the Taylor expansion of the wavelet correlation
spectrum is used to show the conditions under which corre-
lations are theoretically expected to be scale-invariant �frac-
tal�, close to an asymptotic value, over a range of lower
frequency scales. In Sec. IV, a linear least squares estimator
of the “fractal connectivity” parameters, i.e., the long
memory exponents of the two processes, the asymptotic cor-
relation between them, and the range of scales over which
correlations are empirically invariant, is introduced and
evaluated in terms of bias and efficiency. In Sec. V, these

mathematical results are verified by analysis of simulated
fractional integrated noise �FIN� processes. In Sec. VI, we
show that the multivariate LM model is appropriate to two
substantively diverse dynamic systems: a human brain func-
tional network and a financial market; both brain and market
systems demonstrate fractal connectivity regimes over which
network topological metrics—e.g., clustering and minimum
path length—are scale invariant. Sec. VII comprises some
concluding remarks.

II. LONG MEMORY

A single long memory process X= �X�t��t�Z has a slowly
decaying autocorrelation function or, equivalently, a 1 / f
power law function for spectral density at low frequencies
�8�. Such persistent or long range dependent behavior is
widely observed in processes including neurophysiological
and econometric time series �9,10�. Multivariate long
memory processes are dynamic systems comprising multiple
interdependent time series, at least some of which have such
univariate long memory properties.

A. Univariate models

Several statistical models have been defined for univariate
long memory processes, including fractional Gaussian noise
�fGn� �10,11� and fractionally integrated noise �FIN� or frac-
tional difference processes �12,13�. Here we will define long
memory processes using the general formalism developed by
Moulines et al. �14� which subsumes several more specifi-
cally defined models including autoregressive fractionally in-
tegrated moving average �ARFIMA� and FIN processes �as
we show in more detail in Appendix A�.

Let X= �X�t�� be a real-valued discrete process at time
points t�Z. X is said to be long memory with parameter d
if, for an integer D= �d−1 /2�, the Dth order difference
process
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Z = �1 − B�DX �1�

is stationary with spectral density function

SZ�f� = ��1 − e−if�2�D−d�S*�f�, − � � f � � . �2�

In Eq. �1�, B denotes the backward shift operator, so that
for all integers D�1, �1−B�DX= �1−B�D−1�X�t�−X�t−1��,
and for a fractional coefficient �,

�1 − B�� = �
k=0

� 	�

k

�− 1�kBk, �3�

where k denotes lag; so that

�1 − B��X = �
k=0

� 	�

k

�− 1�kX�t − k� = Z�t� �4�

with

	�

k

 =

��� + 1�
��k + 1���� − k + 1�

. �5�

The first part of this spectral density function �SDF� for
the difference process �Eq. �2��, �1−e−if�2�D−d�, controls its
long memory properties or long range dependency, whereas
the second part of the function, S*�f�, controls its short
memory properties or short range dependency.

The long memory parameter d is simply related to the
Hurst exponent H of the process by d+1 /2=H. When d=0,
or equivalently H=0.5, the process is stationary white noise;
when 0	d	1 /2 or 0.5	H	1, the process is stationary
long memory; when d
1 /2 the process is nonstationary
long memory.

The short memory function S*�f� can be any non-negative
symmetric function which is bounded on �−� ,�� and has a
limit at the origin equal to one. For example, in the simplest
case, S*�f� could be a constant, e.g., S*�f��1, and the pro-
cess is thereby defined as a fractionally integrated noise.

B. Multivariate models

A similarly general definition can be formulated for mul-
tivariate long memory processes, i.e., multivariate time series
comprising multiple univariate LM processes and a given
cross-spectral density.

Let Y= �Y�t��t�Z be a real-valued q-vector process. Y is
said to be a q-vector long memory process with memory
parameters d1 , . . . ,dq if, for Dm= �dm−1 /2�, with 1�m�q,
the Dth order difference process

Z = D�B�Y �6�

is stationary with the cross-spectral density function, for 1
�m ,n�q,

SZm,Zn
�f� =

�m,n

2�
�1 − e−if�Dm−dm�1 − eif�Dn−dn

long memory

S
m,n
* �f�

short memory
� � f � � .

,

�7�

The long memory part of the complex-valued cross-spectral

density function is controlled by the memory parameters of
the two processes, dm and dn, and a constant, �m,n. The short
memory part is a real, non-negative symmetric function
which modulates the cross-spectral density function at higher
frequencies with no effect at the lowest frequencies. This
model is not completely general but it is general enough to
encompass many widely used species of long memory mod-
els, e.g., ARFIMA, FIN, fGn.

In Eq. �6�, B is the backward shift operator as previously
defined and D�B� is a diagonal matrix operating a lag on
each component of the vector process Y:

D�B� = �
�1 − B�D1 0 ¯ 0

0 �1 − B�D2. . . 0

] ] ]

0 0 ¯ �1 − B�Dq
 . �8�

In Eq. �7�, �m,n is a constant �needed for the normaliza-
tion�. As in the univariate case, the functions S

m,n
* �f� are non-

negative symmetric functions which are bounded on
�−� ,�� with a limit at the origin equal to one, and the effect
of changing S

m,n
* �f� is to modulate the cross-spectral density

function at higher frequencies with no effect at the lowest
frequencies.

We assume that the cross-spectral density function,
S

m,n
* �f� in Eq. �7�, and the autospectral density functions

S
m,m
* �f� and S

n,n
* �f�, have the forms

S
m,n
* �f� = 1 + �m,nf2 + o�f2� , �9�

S
m,m
* �f� = 1 + �m,mf2 + o�f2� , �10�

S
n,n
* �f� = 1 + �n,nf2 + o�f2� . �11�

This specification is arbitrary but adaptive to several
classes of multivariate LM processes; for example, when �
=0, S

m,n
* �f� is constant up to the second order and the process

is well approximated by a multivariate fractionally integrated
noise �FIN�. It can be seen that �� � 
0 will have effects
predominantly on the cross-spectral density at high frequen-
cies; see Fig. 1.

We also note that we will later refer to these � coefficients
using the more specific notation ��1,2 ,�1,1 ,�2,2� in the
second-order term of the Taylor expansion for the wavelet
correlations between the pair of processes X1 and X2 �Eq.
�26��.

C. Wavelet transform of long memory

The wavelet transform provides a natural basis to explore
the properties of long memory processes �15–18�. It consists
in decomposing a time series over a hierarchy of j
=1,2 ,3 , . . . ,J scales �with larger scales representing lower
frequency intervals� and locations in time. For a broad class
of 1 / f or long memory processes, the wavelet coefficients
will typically be stationary and approximately decorrelated
within each scale or frequency interval �16�. The variance of
the wavelet coefficients at scale j can be written as �̂X�j�
= �1 /nj2

j��k �wj,k
�X��2, where wj,k

�X� is the wavelet coefficient at
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scale j and location k for process X, and nj is the number of
coefficients at scale j minus the number of boundary coeffi-
cients �16�. The wavelet variance is simply related up to the
first order to the memory parameter by the equation
log2(E��̂X�j��)=2dj+const. We can see that the gradient of a
straight line fitted by linear regression of log2(�̂X�j�) on scale
j is an estimate of 2d= �2H−1�, where H is the Hurst expo-
nent �19�.

Likewise, in analysis of multivariate LM processes, the
covariance at scale j between two component vectors, X1 and
X2, with long memory parameters d1 and d2, respectively,
can be written as �̂X1,X2

�j�= �1 /nj2
j��kwj,k

�X1�wj,k
�X2� where wj,k

�X1�

and wj,k
�X2� are the wavelet coefficients at scale j and location

k for X1 and X2 �20�. The scale-dependent correlation is then
defined as

̂X1,X2
�j� =

�̂X1,X2
�j�

��̂X1
�j��̂X2

�j��1/2 . �12�

We will refer to the set of scale-dependent covariances
��X1,X2

�j�� or correlations �X1,X2
�j�� as the wavelet covari-

ance or correlation spectra. Further details on the discrete
wavelet transform are in Appendix B.

III. TAYLOR EXPANSION OF WAVELET COVARIANCE
AND CORRELATION

To elucidate the effects of changing scale on the covari-
ance and correlation spectra for a pair of LM processes, we
used the appropriate Taylor expansions. �The Taylor expan-
sion of the wavelet variance is also defined in Appendix C.�

To expand the wavelet covariance as the scale tends to
infinity, or the frequency interval of the scale tends to zero,
we use this relation between the scale-dependent covariance
and the cross-spectral density function:

�X1X2
�j� = 2��

−�

�

H j�f�SX1,X2
�f�df , �13�

where H j�f� is the squared gain function of the wavelet filter
and we can choose the filter such that �16�

H j�f� = �2 j , 1/2 j+1 � �f � � 1/2 j ,

0, otherwise.
�14�

Noting that the imaginary part of the SDF is odd, we have to
make the Taylor expansion of the following quantity for the
jth scale-dependent wavelet covariance:

�X1X2
�j� = 2�2 j+1�

2�/2j

2�/2j+1

Re�SX1,X2
��f�df

= K̃d1,d2,�2 j�d1+d2��a0 + a1
1

2 j + a2
1

22j + o	 1

22j
� ,

�15�

where K̃d1,d2,� is a constant depending on �d1 ,d2 ,�� and
�a0 ,a1 ,a2� are the zero-, first-, and second-order terms of the
Taylor expansion:

K̃d1,d2,� = 2�12Bd1,d2,1�2��1−d1−d2, �16�

a0 = cos	 �d1 − d2��
2


 , �17�

a1 = 2� sin	 �d1 − d2��
2


 �d1 − d2�Bd1,d2,2

2Bd1,d2,1
, �18�

a2 = �2��2�Ad1,d2
+ �1,2�cos	 �d1 − d2��

2

Bd1,d2,3

Bd1,d2,1
, �19�

where

Ad1,d2
= − �d1 − d2�2/8 + �d1 + d2�/24 �20�

and

Bd1,d2,k = 	1 −
1

2k−d1−d2

� �k − d1 − d2�, k = 1,2,3.

�21�

We can deduce from this result that the log of the absolute
value of the wavelet covariance will be a linear function of
scale with a gradient proportional to the memory parameters
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FIG. 1. �Color� Cross-spectral density functions �SDF� and
wavelet correlation spectra for LM processes comprising variable
amounts of short range dependency or short memory. �a� Each
curve is the cross-spectral density function for a pair of long
memory processes with parameters d1=0.2, d2=0.3 and short
memory function S

m,n
* �f�=1+�m,nf2+o�f2� �Eq. �9�� with various

values of �: �=0.1, purple curve; �=0.2, blue curve; �=0.3, green
curve; �=0.4, red curve; �=0.5, black curve. �b� Each curve is the
wavelet correlation spectrum for the same set of processes. When
�m,n→0, i.e., the short memory cross spectrum is invariant, the
wavelet correlation spectrum shows exact scale invariance over the
entire range of scales. When �m,n→0.5, i.e., the short memory
cross spectrum is frequency dependent, the wavelet correlation
spectrum continues to demonstrate scale invariance, albeit over a
relatively restricted range of low frequency scales.
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of the processes. Indeed, by taking the base 2 logarithm of
both sides of Eq. �15�, we can see that the log of the absolute
value of the wavelet covariance is equal to j�d1+d2� plus
other terms independent of j up to the first order.

The Taylor expansion for the wavelet correlation at scale
j is given by

X1X2
�j� =

�X1X2
�j�

��X1
�j��X2

�j��1/2

= Kd1,d2,��b0 + b1
1

2 j + b2
1

22j + o	 1

22j
� , �22�

where

Kd1,d2,� =
�12

��11�22

Bd1,d2,1

�Bd1,d1,1Bd2,d2,1�1/2 , �23�

b0 = cos	 �d1 − d2��
2


 , �24�

b1 = 2� sin	 �d1 − d2��
2


 �d1 − d2�Bd1,d2,2

2Bd1,d2,1
, �25�

b2 = �2��2 cos	 �d1 − d2��
2


�−
1

2	�Ad1,d1
+ �1,1�

Bd1,d1,3

Bd1,d1,1

+ �Ad2,d2
+ �2,2�

Bd2,d2,3

Bd2,d2,1

 + �Ad1,d2

+ �1,2�
Bd1,d2,3

Bd1,d2,1
� ,

�26�

with Ad1,d2
and Bd1,d2,k as previously defined in Eqs. �20� and

�21�.
We can see that the wavelet correlation spectrum only

depends on scale in the first- and higher-order terms of the
Taylor expansion; the constant and zero-order term are both
scale invariant �Eq. �22��. Since the zero- and first-order
terms are parametrized solely by the difference �d1−d2� �Eqs.
�24� and �25��, we can also see that when the two processes
have similar memory parameters, the zero-order term goes to
unity, the first-order term goes to zero, and the correlation
spectrum reduces to a constant plus second- and higher-order
terms. Moreover, the importance of these higher-order terms
will be exponentially reduced as the scale is increased or j
becomes larger �Eq. �22��. In short, these results predict the
property of fractal connectivity—or convergence of the
wavelet correlation spectrum on its asymptotic value over a
range of low frequency scales—for any pair of LM processes
�conforming to Eq. �7�� which have similar memory param-
eters. They also show that the constant Kd1,d2,� multiplied by
the zero-order term b0 is the asymptotic correlation at infi-
nitely large scales or low frequencies.

To explore in more detail the relationship between the
difference in memory parameters �d1−d2� and the flatness or
scale invariance of the wavelet correlation spectrum, we used
the ratio of the first- and zero-order terms of its Taylor ex-
pansion, b1 /b0. When b1 /b0	1, the spectrum will be reason-

ably well approximated by the scale-independent zero-order
term; when b1 /b0
1, the spectrum will not be well-
approximated by the zero-order term in the first few scales
�the scale-dependent first-order term will be proportionally
more important�. We computed this ratio for long memory
processes with 0	 �d1−d2 � 	1 and confirmed that greater
differences in the memory parameters were associated with
larger values of the ratio b1 /b0. However, we found that
b1 /b0 was less than 1, indicating that the wavelet correlation
spectrum was substantially independent of scale, for all pairs
of processes with �d1−d2 � 	0.5; see Fig. 2.

IV. WAVELET ESTIMATOR OF FRACTAL
CONNECTIVITY

Less intuitively perhaps, the Taylor expansions also allow
us to specify a set of linear equations which can be solved by
least squares to estimate the memory parameters d1 and d2,
the asymptotic correlation lim J→�=Kd1,d2,�b0, and the range
of scales jlow→ jhigh over which the wavelet correlation spec-
trum is empirically scale invariant for a pair of LM pro-
cesses.

Let us assume two correlated time series X1 and X2, such
that the difference of their memory parameters is less than
0.5. We can then write the following linear system, for jlow
� j� jhigh, where jlow�1 and jhigh�J:

log2��X1
�j�� = 2d1j + c1, �27�

log2��X2
�j�� = 2d2j + c2, �28�

log2���X1,X2
�j��� = �d1 + d2�j + c12, �29�

log2��X1,X2
�j��� = 0j + c12 −

1

2
c1 −

1

2
c2, �30�

where

c1 = log2�2�11Bd1,d1,1�2��1−2d1� , �31�

c2 = log2�2�22Bd2,d2,1�2��1−2d2� , �32�

0
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/b
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d1-d2

FIG. 2. �Color� Plot of the ratio of the first- and zero-order terms
of the Taylor expansion of the wavelet correlation b1 /b0 vs differ-
ence in memory parameters �d1−d2�. Scale invariance or flatness of
the wavelet correlation spectrum is quantified by b1 /b0	1, which
occurs whenever the parameter difference is small, 0	 �d1−d2 �
	0.5, regardless of the sum of the parameters: Blue line, d1+d2

=0.2; red line, d1+d2=3; green line, d1+d2=100.
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c12 = log2�2�12Bd1,d2,1�2��1−d1−d2 cos„�d1 − d2��/2…� .

�33�

The least mean squares estimator consists in minimizing
the following quantity over a range of scales J= jlow→ jhigh:

�LS
2 �J� =

1

jhigh − jlow + 1 �
j=jlow

jhigh ��log2��X1
�j�� − 2d1j − c1�2

+ �log2��X2
�j�� − 2d2j − c2�2

+ �log2���X1,X2
�j��� − �d1 + d2�j − c12�2

+ 	log2��X1,X2
�j��� − c12 +

1

2
c1 +

1

2
c2
2� . �34�

We note that this system is not soluble for numerical rea-
sons if any of the variances, covariances, or correlations are
exactly zero. Otherwise, the solution of this system corre-
sponds to the vanishing values of the derivatives of Eq. �34�
with respect to each of the parameters, so it is equivalent to
solve the following linear system:

A�
d1

d2

c1

c2

c12

 = e , �35�

where

A = �
10 �

j=jlow

jhigh

j2 2 �
j=jlow

jhigh

j2 4 �
j=jlow

jhigh

j 0 2 �
j=jlow

jhigh

j

2 �
j=jlow

jhigh

j2 10 �
j=jlow

jhigh

j2 0 4 �
j=jlow

jhigh

j 2 �
j=jlow

jhigh

j

4 �
j=jlow

jhigh

j 0
5�jhigh − jlow + 1�

2

�jhigh − jlow + 1�
2

− �jhigh − jlow + 1�

0 4 �
j=jlow

jhigh

j
�jhigh − jlow + 1�

2

5�jhigh − jlow + 1�
2

− �jhigh − jlow + 1�

2 �
j=jlow

jhigh

j 2 �
j=jlow

jhigh

j − �jhigh − jlow + 1� − �jhigh − jlow + 1� 4�jhigh − jlow + 1�

 �36�

and

e = �
4 �

j=jlow

jhigh

j log2��X1
�j�� + 2 �

j=jlow

jhigh

j log2���X1,X2
�j���

4 �
j=jlow

jhigh

j log2��X2
�j�� + 2 �

j=jlow

jhigh

j log2���X1,X2
�j���

2 �
j=jlow

jhigh

log2��X1
�j�� − �

j=jlow

jhigh

log2��X1,X2
�j���

2 �
j=jlow

jhigh

log2��X2
�j�� − �

j=jlow

jhigh

log2��X1,X2
�j���

2 �
j=jlow

jhigh

log2���X1,X2
�j��� + 2 �

j=jlow

jhigh

log2��X1,X2
�j���

 .

�37�

The residual sum of squares, Eq. �34�, can be used to
evaluate the accuracy of the model. We propose to estimate
this quantity over all possible scale ranges to identify the
scale range J= jlow→ jhigh where the residual error is small-

est, i.e., where the data best demonstrate empirically the
property of fractal connectivity or scale invariance of the
wavelet correlation spectrum. For example, we can calculate
the residual sum of squares, divided by its maximum value
over all possible values of jlow and jhigh, to identify the maxi-
mum range associated with residual error less than 1% of the
maximum error over all possible scaling ranges.

V. SIMULATED LM PROCESSES

We simulated multivariate fractional integrated noise
�FIN� using the method proposed by Chambers �21�, which
allows us to generate two or more dependent fractional inte-
grated noise �FIN� processes drawn from a given spectrum.
In Fig. 3, we simulate two pairs of FIN processes �with
65 536 time points�, with different long memory parameters,
�0.2,0.3� and �0.2,1.3�, but the same spectrum given by the
matrix �:

� = � 1 − 0.5

− 0.5 0.3
� . �38�

The asymptotic value of the correlation for the first pair of
processes was −0.901, and for the second pair it was 0.14.
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In choosing to use simulated FIN processes to illustrate
some of our theoretical results, we have therefore implicitly
assumed that S

m,n
* �f� is identical and independent of fre-

quency for each pair of processes. However, we note that the
theory is developed for the more general class of multivariate
LM processes defined by Eq. �7� and the use of FIN pro-
cesses for illustrative purposes is without loss of generality.

For the first pair, the memory parameters were chosen to
be d1=0.2 and d2=0.3, thus the difference in memory param-
eters �d1−d2 � =0.1 was close to zero and theoretically we
predicted that the wavelet correlation spectrum would be
scale invariant. As shown in Fig. 3, this prediction was sup-
ported empirically: wavelet correlations were close to their
asymptotic value lim J→�=−0.9 at all scales. For the second
pair of processes, we chose d1=1.3 and d2=0.2, so the dif-
ference �d1−d2 � =1.1 was close to one. We predicted that
wavelet correlations would be more strongly affected by
scale because the difference in memory parameters was
larger. This prediction was also supported empirically: The
wavelet correlation spectrum converged on its asymptotic
value �0.14� only over a relatively restricted range of lower
frequency scales.

In order to study the bias and consistency of this least
squares estimator, we used Monte Carlo simulations of 1000
correlated pairs of FIN processes with memory parameters
d1=0.2, d2=0.3, or d1=0.2, d2=1.3, and varying number of
data points �N � 2048, 4096, 8192, 16 384, 32 768, or
65 536�. For the pair of processes with similar memory pa-
rameters �d1−d2 � =0.1, the fractal connectivity regime was
generally more extensive �scales 1 to 8� than for the pair with
�d1−d2 � =1.1 �scales 6 to 10�. As shown in Fig. 4, the esti-
mator was consistent: both the bias and the error of the least
squares estimator decreased monotonically with increasing
N. Asymptotic correlation was somewhat overestimated
when the difference in memory parameters was large and the
length of the time series was short; otherwise, all parameters
were estimated without major bias.
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FIG. 3. �Color� Fractal connectivity of long memory processes
depends on the difference in memory parameters. Box plots of
wavelet correlations vs scale for 1000 pairs of FIN processes �a�
with memory parameters d1=0.2 and d2=0.3 and �b� with d1=0.2
and d2=1.3. The blue line shows the asymptotic correlation lim J→�

and the red line shows the approximation to the wavelet correlation
spectrum including the first-order �scale-dependent� term of the
Taylor expansion. A least squares estimator was used to estimate the
memory parameters and asymptotic correlation �c� when �d1−d2 �
=0.1 and �d� when �d1−d2 � =1.1. The residual variance of the esti-
mator was small, less than 1% of its maximum value, �e� over all
possible scales when the difference in memory parameters was
small; �f� but only for a restricted range of scales �jlow=6, jhigh

=10� when the difference in memory parameters was close to 1.
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Although our analysis is motivated principally by an in-
terest in the bivariate or multivariate properties of long
memory systems, we can also compare the performance of
our bivariate estimator of the memory parameters of a pair of
long memory processes with the bias and efficiency of exist-
ing univariate methods for estimating the long memory pa-
rameter of a single process: The Whittle estimator, the log
periodogram, the rescaled range �R/S� estimator �22�, and
detrended fluctuation analysis �DFA� �23,24�. As described
in greater detail in Appendix D, our bivariate least squares
estimator was generally less biased and somewhat less effi-
cient than these prior univariate estimators.

VI. BRAIN AND MARKET SYSTEMS

A. Data

1. Magnetoencephalography (MEG)

The primary MEG data set was acquired from a healthy
43 year old woman studied during rest �with eyes open� at
the National Institute of Mental Health �Bethesda, MD� us-
ing a 274-channel CTF MEG system �VSM MedTech, Co-
quitlam, BC, Canada� operating at 600 Hz �25�. Each time
series in this data set comprised N=1 080 000 time points. A
second MEG data set was acquired under the same condi-
tions and using the same system from a 27 year old male
with N=144 000.

Both MEG data sets were mean corrected and filtered to
attenuate background low frequency noise and line noise at
60 Hz using a 0.3 Hz width filter. The participants gave in-
formed consent in writing and the protocol was ethically
approved by the National Institute of Mental Health Institu-
tional Review Board.

2. Standard & Poor’s index (S&P500)

Daily trading volume time series �N=4096� for 349
stocks continuously traded on the New York Stock Exchange
in the period 1991 to 2007, and listed on the S&P500 index,
were provided by Commodity Systems, Inc. �CSI� via the
Yahoo! Finance website �http://finance.yahoo.com�.

B. Brain and market processes

Considering first a single pair of MEG time series �Fig.
5�, the wavelet variance spectrum for each time series, and
the wavelet covariance spectrum for the pair of time series,
each tended to increase as a function of scale. We estimated
the memory parameters �d1=0.05; d2=0.2�, asymptotic cor-
relation �lim J→�=−0.58�, and scale-invariant range of frac-
tal connectivity �from wavelet scales 5 to 8, equivalent to the
frequency interval 1 to 10 Hz�. Over this range of frequen-
cies, corresponding approximately to the �, �, and � bands of
classical neurophysiology, we found the wavelet correlations
converged on the asymptotic correlation.

Likewise, considering a single pair of trading volume
time series for two stocks �Chevron Corporation and Exxon
Mobil Corporation�, the wavelet variance and covariance
spectra increased as a function of scale, the difference in
memory parameters was small �d1=0.3 and d2=0.34�, and

the wavelet correlations converged on the asymptotic corre-
lation �lim J→�=0.48� with a fractal connectivity regime
from scales 1 to 5 �equivalent to period lengths in the range
two days to two months�; see Fig. 5.

As shown in Fig. 6, estimation of the asymptotic correla-
tion, lim J→�, substantially improves precision of estimation
of long term dependency between pairs of LM processes in
market and brain systems, especially when there are fewer
time series data available.

C. Brain and market networks

To illustrate the generalizability of these results to more
than a single pair of time series sampled from each system,
first we estimated the LM parameters, and the pairwise dif-
ference in memory parameters �d1−d2�, for all possible pairs
of processes in both MEG data sets and the S&P500 data set;
see Fig. 7. The proportion of pairs satisfying the condition
�d1−d2 � 	0.5 was 96% for the MEG data sets and 99% for
the S&P500 data set, indicating that the properties of the
time series highlighted for illustrative purposes in Fig. 5
were representative of the larger set of processes comprising
brain and market systems.
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FIG. 5. �Color� Fractal connectivity of long memory processes
sampled from human neurophysiological �left column� and financial
market �right column� data sets: �a� A pair of MEG time series
recorded from a single human subject at rest and �b� trading volume
time series for a pair of stocks traded on the New York Stock
Exchange. For both �c� the MEG data and �d� the financial data,
inset plots show that the base 2 logarithm of the wavelet variances
of the processes �log2 V� and the base 2 logarithm of their wavelet
covariance �log2 C� increase as a linear function of scale �blue line�
over a range of scales. Over the same range of scales, the main plots
show the wavelet correlation spectrum converges on its asymptotic
value �blue line� and �e�, �f� the residual error of the least squares
estimator is small �less than 1% of its maximum�.

FRACTAL CONNECTIVITY OF LONG-MEMORY NETWORKS PHYSICAL REVIEW E 77, 036104 �2008�

036104-7



Second, we considered in more detail the 40 most
strongly correlated pairs of time series in the S&P500 and
one of the MEG data sets, visualizing the networks derived
by thresholding the resulting wavelet correlation matrices at
each scale �26�. As shown in Fig. 8, all pairs of MEG time
series demonstrated approximately the same property of con-
vergence on an asymptotic correlation in the fractal connec-
tivity regime from scales 5 to 8; whereas all pairs of financial
time series demonstrated asymptotic convergence over the
fractal connectivity regime from scales 1 to 5. One conse-
quence of scale-invariant correlations between multiple pairs
of processes in the same systems is that the topologies of
undirected graphs, representing the strongest interdependen-
cies between nodes of both networks, are also scale invari-
ant. We can see this more clearly in Fig. 9, which shows that
the mean degree, clustering coefficient, and minimum path
length are relatively invariant over scales 2–5 for the brain
network and invariant over scales 4–8 for the market net-
work.

VII. DISCUSSION

The results reported here demonstrate that fractal connec-
tivity of dynamic networks is a theoretically predictable
property of any multivariate long memory process that con-
forms to Eq. �7�; and, as such, it is demonstrated by financial
markets as well as brain functional networks. It is conceiv-
able that the mathematical substrate in common between
neurophysiological and econometric data will lead to greater
substantive convergence in the future between market theory
and systems neuroscience �27–29�.

Previous studies have considered the effects of changing
time scale on correlations between financial time series and
demonstrated both scale-dependent and -independent effects.
One example of time scale related variation is the so-called
Epps effect, whereby the correlation between price return
series becomes smaller with decreasing duration of the time
horizon over which the correlation is estimated �30,31�. It
has also been demonstrated that topological properties of fi-
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FIG. 6. �Color� Variability in estimation of
low frequency correlations between long memory
processes. Wavelet correlations �red lines� and
asymptotic correlation �blue lines�, with 80%
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a pair of MEG time series with �a� N=8960 and
�b� N=144 128 and for a pair of financial time
series with �c� N=512 and �d� N=2048. Long
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asymptotic correlation especially when N is
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nancial networks derived from thresholded correlations be-
tween multiple pairs of stock price returns can demonstrate
the emergence of a modular or hierarchical architecture as
the time horizon for estimation is increased from a few min-
utes to one trading day �32�. However, there is other prior

evidence for scale-invariant properties of financial networks
�32,33�. It will be interesting in future studies to apply our
methods of analysis to more fine-grained financial time se-
ries, which can support estimation of correlations and con-
nected networks corresponding to period lengths in the order
of minutes and hours. We predict that higher frequency fi-
nancial networks, like the high frequency �10–100 Hz� brain
networks considered here, may have properties that diverge
from the asymptotic limit approached by lower frequency
networks in the fractal connectivity regime.

Other studies have previously investigated the fractal or-
ganization of complex networks, defined as length-scale in-
variance of network topology, and related this property to
evolutionary advantage and simple growth rules �34,35�. We
note that our analysis of scale invariance differs fundamen-
tally in the sense that we have described time-scale invari-
ance of network dynamics. However, it is clearly an interest-
ing question to consider how the scaling properties of a
network’s dynamics might be related to the self-similarity of
its topological organization at any scale.

We conclude by highlighting one immediate practical
benefit of this analysis, namely, improved efficiency of esti-
mation of long term correlations based on short time series.
Estimation of 1 / f or long memory parameters and/or low
frequency correlations is of interest in many fields, including
but not limited to neurophysiology and econometrics, al-
though imprecise estimation of these parameters can restrict
their predictive utility. For example, if we wished to estimate
the long term covariation between a pair of financial time
series as a guide to investment portfolio management, we
could simply estimate the wavelet correlation corresponding
to a large �low frequency� scale; however, due to the rela-
tively small number of coefficients at large scales, the vari-
ability of this estimate will be large. As shown in Fig. 6,
estimation of the asymptotic correlation, lim J→�, provides a
considerably more precise estimate of the long-term or
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“structural” covariation between the two processes. This su-
perior precision of the asymptotic correlation is attributable
to its estimation based on the greater number of wavelet
coefficients made available for the purpose by exploiting all
scales of the fractal connectivity regime.
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APPENDIX A: TYPES OF LONG MEMORY PROCESSES

Here we show explicitly how fractionally integrated noise
�FIN�, autoregressive fractionally integrated moving average
�ARFIMA� processes, and fractional Gaussian noise �fGN�
can all be regarded as species of the general long memory
process �Eq. �2��, differentiated by the form of the high fre-
quency modulating functions S*�f� in the expressions for
their spectral densities.

1. Fractionally integrated noise (FIN)

When −1 /2	d	1 /2 and S*�f� is a constant, i.e., it is
the spectral density of a “white” noise, the process X
= �X�t��t�Z is called a fractionally integrated noise or frac-
tionally differenced process �16� with parameter d.

More formally the FIN process X is related to a white
noise process �= ���t��t�Z with mean zero and variance ��

2

through �1−B�dX=�. Here, S*�f�=1 and �=��
2. When d

�1 /2 then D= �d−1 /2� and the Dth order difference of X is
a fractionally integrated noise with memory parameter d
−D.

This generalizes to the multivariate case of a q-vector
fractionally integrated noise, Y= �Y�t��t�Z, with the S

m,n
* �f�

functions assumed to be equal to 1. The difference process
Z=D�B�Y is a stationary process with mean zero, i.e.,
E�Z�=0, serial independence, i.e., E�Z�s�Z��t��=0 for s� t,
and for all t, E�Z�t�Z��t��=�, i.e., for 1�m ,n�q, �mn

=E�ZmZn�.

2. Autoregressive fractionally interated moving average
(ARFIMA) processes

If −1 /2	d	1 /2, and S*�f� is given by

S*�f� = �2

�1 + �
k=1

q

�ke
−ifk�2

�1 − �
k=1

p

�ke
−ifk�2 ,

with 1 − �
k=1

p

�kz
k � 0 for �z� = 1, �A1�

the process X is one of the class of ARFIMA�p ,d ,q� pro-
cesses.

This class of models anticipates that in addition to the
long memory parameter d, which dictates the long-range de-
pendency of the observations, there may also be parameters
p, q, ��1 , . . . ,�q�, and ��1 , . . . ,�p�, which determine the short
memory properties or short range dependencies of the data.
The extension to the multivariate case consists in assuming
an ARFIMA process for each component of the vector pro-
cess with identical or different parameters, and also with
given cross spectral density functions according to the mul-
tivariate LM model.

Fractional Gaussian noise (fGn)

If −1 /2	d=H−1 /2	1 /2, and S*�f� is given by �8�

S*�f� = 4�2KH �
j=−�

+�
1

�f + j�2h+1 , −
1

2
� f �

1

2
, �A2�

where KH=��2H+1�sin��H��2��−�2H+1�, the process X is
defined as a stationary fractional Gaussian noise.

APPENDIX B: DISCRETE WAVELET TRANSFORM

The wavelet transform is an appropriate and powerful tool
to explore the properties of long memory processes
�15–17,36�. It consists in decomposing a time series over a
hierarchy of j=1,2 ,3 , . . . ,J scales—corresponding to fre-
quency intervals or octaves—and locations in time.

The discrete wavelet transform �DWT� is an orthonormal
basis obtained by dilating and translating �in time� a
“mother” wavelet �, and by dilating and translating a scaling
function �. The DWT at scales j=1,2 . . . ,J for the time se-
ries X is written as

X = �
k

aJ,k�J,k + �
j�J

�
k

dj,k� j,k, �B1�

where for j ,k�Z, � j,k�t�=2−j/2��2−jt−k�, � j,k�t�
=2−j/2��2−jt−k�, aJ,k is the approximation coefficient at scale
J located at time point k, and dj,k is the detail coefficient at
scale j and time point k. The detail coefficients decompose
the variation in the time series over a hierarchy of scales or
frequency intervals. The approximation coefficients quantify
low frequency variation in the residual data after subtraction
of multiscale components represented by the detail coeffi-
cients.

For a broad class of fractal, 1 / f or long memory pro-
cesses, the wavelet coefficients will typically be stationary
and asymptotically decorrelated within each scale or fre-
quency interval �16�. Here we adopt the convention that in-
creasing scale—larger values of j—indexes lower frequency
intervals on the wavelet hierarchy.

1. Wavelet estimators of univariate LM parameters

An estimator of the variance of a long memory process at
each scale of the DWT, �̂X�j�, can be simply defined as the
mean of the squared wavelet coefficients
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�X�j� = E��̂X�j�� = E� 1

nj2
j�

k

�dj,k
�X��2� , �B2�

where �dj,k
�X�� are the wavelet �detail� coefficients at scale j

and location k for X and nj is the number of coefficients at
scale j minus the number of boundary coefficients �16�.

Because the DWT is an orthonormal basis, the total vari-
ance of the time series V�X� is given by the sum of variances
at each scale of the transform

V�X� = E��
j=1

J

�̂X�j�� + E� 1

nJ2
J�

k

�aJ,k
�X��2� . �B3�

This can be used to define an unbiased estimator of the
long memory parameter of the process, d=H−1 /2. Since the
log of the variance is simply related up to the first order to
the memory parameter,

log2��X�j�� = �2H − 1�j + c = 2dj + c , �B4�

where c is a constant, we can see that the gradient of a
straight line fitted by linear regression of log2��̂X�j�� on scale
j is an estimate of 2d= �2H−1�.

2. Wavelet estimators of multivariate LM parameters

In analysis of multivariate LM processes, one wants to
consider also the covariance or correlation between two com-
ponent vectors, X1 and X2, with long memory parameters
d1 ,d2, respectively. We begin with a simple �unbiased� ex-
pression for the scale-dependent covariance between two LM
processes in the wavelet domain:

�X1,X2
�j� = E��̂X1,X2

�j�� = E� 1

nj2
j�

k

dj,k
�X1�dj,k

�X2�� , �B5�

where �dj,k
�X1�� and �dj,k

�X2�� are the wavelet coefficients at scale
j and location k for X1 and X2, respectively, and nj is the
number of the wavelet coefficients at scale j minus the num-
ber of boundary coefficients �16�.

The scale-dependent correlation is then defined as

X1,X2
�j� = E�̂X1,X2

�j�� = E� �̂X1,X2
�j�

��̂X1
�j��̂X2

�j��1/2� . �B6�
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FIG. 10. Bias and efficiency of long memory parameter estimation in simulated noisy FIN processes. �a� Estimation of d1=0.2 and �b�
d2=0.3 in a pair of processes with �d1−d2 � 	0.5; �c� estimation of d1=0.2 and �d� d2=1.3 in a pair of processes with �d1−d2 � 
0.5. In both
sets of simulations, we applied the following estimators: �1� The bivariate least squares estimator, Eq. �34�; �2� Whittle’s estimator �22�; �3�
log periodogram estimator �22�; �4� the rescaled range R /S estimator �22�; and �5� detrended fluctuation analysis �23,24�.
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APPENDIX C: TAYLOR EXPANSION OF WAVELET
VARIANCE

For a single LM process X with memory parameter d �and
d�1 /2�, the Taylor expansion for the wavelet variance at
scale j is

�X�j� = K̃d,�22jd�p0 + p1 + p2
1

22j + o	 1

22j
� , �C1�

where

K̃d,� = 2�11Bd,d,1�2��1−2d, �C2�

p0 = 1, �C3�

p1 = 0, �C4�

p2 = �2��2�Ad,d + ��
Bd,d,3

Bd,d,1
, �C5�

with Ad,d and Bd,d,k as previously defined in Eqs. �20� and
�21�.

APPENDIX D: COMPARATIVE BIAS AND EFFICIENCY
OF MEMORY PARAMETER ESTIMATORS

We compared the performance of our bivariate estimator
of the memory parameters of a pair of long memory pro-
cesses with the bias and efficiency of existing univariate
methods for estimating the long memory parameter of a
single process: The Whittle estimator, the log periodogram,
the rescaled range �R/S� estimator �22�, and detrended fluc-
tuation analysis �DFA� �23,24�.

To do this, we simulated two pairs of FIN processes with
�d1=0.2,d2=0.3� and �d1=0.2,d2=1.3� and added indepen-
dent Gaussian noise �SNR1� to each process. We estimated
the memory parameters for each process by all estimators
and repeated this analysis on the basis of 300 simulations of
each pair of noisy FIN processes. As shown in Fig. 10, our
bivariate estimator was consistently less biased than any of
the univariate estimators although somewhat less efficient. In
future work, we will seek to improve further the efficiency of
our estimator, for example, by generalizing the least squares
algorithm to incorporate more than two LM processes
simultaneously.
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