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Identifiability of Post-Nonlinear Mixtures
Sophie Achard and Christian Jutten, Member, IEEE

Abstract—This letter deals with the resolution of the blind source
separation problem using the independent component analysis
method in post-nonlinear mixtures. Using the sole hypothesis of
the source independence is not obvious to reconstruct the sources
in nonlinear mixtures. Here, we prove the identifiability under
weak assumptions on the mixture matrix and density sources.

Index Terms—Blind source separation, identifiability, indepen-
dent component analysis (ICA), post nonlinear mixture.

I. INTRODUCTION

STARTING from the observation of unknown mixtures of
some independent sources, the problem of blind source sep-

aration consists of reconstructing the sources. The method of
independent component analysis (ICA) allows one to find a set
of combinations of the observations that are independent vari-
ables that are called the reconstructed sources. One must deter-
mine whether the reconstructed sources represent the original
sources. This is referred to as the identifiability of the mixture.
For linear mixtures, Comon [1] has shown that when there is
no noise, the same number of sources and observations, and,
at most, one Gaussian source, the sole hypothesis of the source
independence is sufficient to guarantee that the independent re-
constructed sources represent the original sources.

However, when the mixture is nonlinear, it is, in general, not
identifiable. Indeed, Darmois [2]1 showed that there exist several
nonlinear transformations with a nondiagonal Jacobian (which
means that each output variable depends on at least two input
variables), which preserve the independence of the variables.

Quite recently, Taleb and Jutten [4] suggested to define a
specific nonlinear mixture called post-nonlinear (PNL). The
mixture consists of a matrix and then component-wise invert-
ible nonlinearities (see Fig. 1). They propose to solve the blind
source separation problem with an independent component
analysis method, which consists of looking for a separation
structure made up of the composition of component-wise
nonlinearities and a separation matrix, which, when applied to
the observations, yields independent variables.
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1This reference and all the papers written by Darmois are in French and dif-
ficult to obtain, but Darmois’s results are also available in the book by Kagan et
al. [3], especially in Ch. 3.

Fig. 1. PNL mixture and separation structure.

Taleb and Jutten proved that independent component analysis
provides a solution to the problem of blind source separation,
but their proof requires some restrictions on the density of the
sources and especially that there exists a compact set on which
the density is zero. They conjectured that it would be possible
to remove this working assumption. In this letter, we prove that
indeed, this constraint can be removed.

The letter is structured as follows. In Section II, we will give
the definition of the model, the assumptions, and the main the-
orem. Then, the proof is detailed, Section III gives the proof of
an intermediate lemma, and Section IV allows us to conclude.

II. MODEL, ASSUMPTIONS AND THEOREM

A. Model

Let be independent random variables, let
be invertible and differentiable functions, and

be an invertible matrix. Let us define the PNL
observations (see left part of Fig. 1)

(1)

In this letter, we focus on the problem of blind source separa-
tion of this mixture, which consists of looking for nonlinearities

, and a matrix (see right part of Fig. 1) such
that defined by (2) are independent

(2)

Let us now denote , ; thus, we can
write in terms of the sources as

(3)

As shown in [4], the key point in the identifiability problem of
PNL mixtures is to show that if (3) are independent,
then , , are necessarily linear.

B. Assumptions

For clarity, all the hypotheses used in the sequel are listed
here.
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H1) Each source appears mixed at least once in the obser-
vations.

H2) We suppose differentiable and invert-
ible (same assumptions as ).

H3) There exists at most one Gaussian source.
H4) The joint density function of the sources is supposed

differentiable, and its derivative is continuous on its
support (no hypothesis is made on the support of the
density functions).

Concerning hypothesis H2, assuming in addition
increasing functions does not involve

any loss of generality since are already supposed
continuous and invertible (this property will be used in
Section IV for the proof of the theorem). H3 is the usual
hypothesis necessary for the identifiability of linear mixtures.
As for H1 and H4, let us make some more detailled remarks.

Remark 1: H4 is a technical assumption and includes the
case of joint density function with infinite support and with
bounded support in restricting the integral on the support of the
joint density. However, in the case of bounded sources, or of
distributions that vanish on a compact, there already exist theo-
retical results [4]–[6]. For discrete-valued sources, the problem
is still open, but a geometrical approach is more adequate.

Remark 2: The assumption H1 is a necessary condition. In-
deed, the sources may be recovered if they appear mixed at
least one time in the mixture. Since is invertible, at least one
nonzero entry per row and per column exists.

The simplest matrix is a diagonal matrix up to a
permutation, and it implies no mixture. Consequently,

reduces to ,

where is a permutation on , and the
are independent random variables. In that case (only using
the independence assumption), it is impossible to estimate the
nonlinearities and to restore the sources .

Hence, to be able to estimate each nonlinearity , the ma-
trix must actually mix the sources. If one observation only
depends on one source, e.g., (without loss
of generality), then this source must appear in another mixture,
i.e., there exists such that with

, and there exists such that . If it is
not satisfied, cannot be estimated, and will be considered
as a source instead of . Therefore, H1 can be equivalently
characterized on the matrix by the following condition: For all

, such that , either there exists
such that or there exists such that .

C. Theorem

The identifiability is then stated by the following theorem.
Theorem 1: Let us take the model (3), with assumptions H1,

H2, H3, and H4.
are independent if and only if are

linear functions and , where is a permutation ma-
trix, and is a diagonal matrix.

Let us make some comments about this theorem.
First, it is easy to prove that if are linear and

, then are independent. Thus, it remains

to prove the converse, that is, if are independent,
then are linear and . However, it is suf-
ficient to prove that the independence of implies the
linearity of . Indeed, when the functions
are linear, the model is simply a linear model, and by applying
the results of Comon [1], we deduce that .

The proof of theorem 1 is done according to the following
scheme.

In Section III, we first prove the next lemma 1, in which H1
is replaced by H1’. This assumption H1’ is just to process but
leads to define a smaller set of mixing matrices . The differ-
ence of mixing matrices defined by H1’ and H1 correspond to
a particular case where one row with only one nonzero entry
exists. This special case will be studied in Section IV for com-
pleting the proof of theorem 1.

III. LEMMA 1

Lemma 1: Let us suppose the following.

H1’) There exist at least two nonzero elements in each row
of .

Let us take the model (3), with assumptions H1’, H2, H3, and
H4. If are independent, then are linear
functions.

A. Outlines

Equivalently, we can prove by reductio ad absurdum that if
there exists at least one nonlinear function among the func-
tions, then for any invertible matrix , cannot be
independent.

A natural characterization of independent variables is given
by the equality of their joint density and the product of their
marginal densities, but in practice, this criterion needs to be ex-
pressed in a different way.

Thus, in Section III-B, we present an explicit characterization
of nonindependence based on mutual information. Indeed, mu-
tual information is minimal and equal to zero when calculated
for independent random variables.

Finally, in Section III-C, we will show that if there exists
at least one nonlinear function among the functions, then
mutual information calculated for defined in (3) is
nonzero.

B. Characterization of Independence

The characterization of independence used in the sequel
comes from theorem 3.4 in [7] (which is recalled below). It
gives a characterization of the minimum of mutual information
over the set , where , and

denotes the integral of with respect to all the coor-
dinates except the th coordinate. It is clear that
as well as .

When the integrals exist, we define
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However, can be rewritten as

and the last term in the difference can be expressed as follows:

The last expression uses the fact that .
Then, it follows that for all

represents, in fact, the Kullback–Leibler divergence be-
tween and . It is known [8] that satisfies

, where denotes the
mutual information.

Then, theorem 3.4 in [7] claims the following.

Theorem
3.4.) minimizes , , if and only if

for all integrable function
satisfying , .

As are defined by (3), i.e., with at least one non-
linear invertible function and an invertible fixed matrix,
the second term in , , is a constant.
Thus, by applying theorem 3.4 to , will be
nonzero if and only if there exists a function such that

for all (4)

and

(5)

Here, we have applied theorem 3.4 by taking .
Let us notice that because of
the definition of .

For simplicity, the construction of will be detailed in the
two-dimensional case, i.e., . This assumption graphi-
cally represents how to construct . Following the scheme of
the proof, the extension to a more general case when is
obvious.

C. Construction of

In this section, the construction of is explained, and we will
give an example to complete the proof.

1) Let us recall the properties that have to be verified by
in the case :

• The support of is included in the support of the joint
density of [so that the integral (5) is well
defined].

• for all . In our specific
case, with , these relations can be expressed as

and .
• Equation (5) verified by and taking into account the

model (3) writes

det

where is defined by

(6)

2) Integrating twice by part on the last integral, we obtain
the equation shown at the bottom of the page, where

, , and
det .

Let us denote .
3) The key to the proof is now to study the function

Indeed, following Darmois [9], we show that the
function cannot be expressed as a product of uni-
variate functions.

In fact, let us suppose that there exist two functions
and such that

det

det
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Then, denoting , , 2, this is equiva-
lent to suppose

(7)

By assumption H1’ on the matrix , there exist also at
least two nonzero terms in each row of , and the
assumption on the functions means that there exists
one function such that is nonconstant. Then,
using the same argument as Darmois in [9], we show
that all the functions in (7) are nonzero on the whole
space . Thus, (7) is equivalent to

(8)
Then, we apply the results of Darmois concerning the
solutions of equations of the form

where and are linear combinations of and .
The result claims that when or is nonconstant,
and are quadratic. Applying the result to (8) implies
that the density function of and are Gaussian,
which contradicts hypothesis H3.

Finally, as , is not equal to the sum
of univariate functions, we conclude that there exists
a domain on which the function is nonzero,
and its sign does not change.

4) To conclude the proof, we have to write a function
such that on . For instance, in this purpose,
we can choose such that is strictly positive on
and null outside and defined by

for

where , , , and are defined in Fig. 2.
Let us note that when , it is known that the results of

Darmois are also true, and the function is build with two sine
functions and cosine functions. The lemma is then also
true for . Fig. 2 represents the function .

IV. PROOF OF THEOREM 1

With lemma 1, the identifiability of post-nonlinear mixtures is
proven, subject to the restriction on the mixing matrix , which
must satisfy H1’. In order to complete the proof of theorem 1,
it remains now to consider the matrices that verify H1 and not
H1’. Consequently, this consists of dealing with the case where

and are defined by (9)

(9)

Under the assumptions on the mixture and the nonlinearities and
following the proof of the previous lemma (lemma 1), showing
that and are dependent, i.e., there exists a stochastic link
between and , implies in this case that the function [de-

Fig. 2. Graphical representation of��B and definition of the support of��B,
-.- axes defined by the variable change B : D : B (v � � ) +B (v �

� ) = 0D : B (v � � ) +B (v � � ) = 0.

fined in (6)] cannot be expressed as a sum of univariate functions
and that the variables and cannot be independent. This
concludes the proof of theorem 1.

The problem of studying the link between and is called
a factor analysis problem. Darmois [10] solved this problem by
studying the difference between the joint repartition function
and the product of the marginals. Actually, he proved that if
and are monotonous invertible functions, then the sign of the
difference between the joint repartition function and the product
of the marginals is strictly positive on a certain neighborhood of
the space. Then, we conclude that and are dependent.
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