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Motivations

Figure: Historical (1958-2000) daily rainfall maxima in mm per station in the Cévennes-Vivarais region of France.

How to compute extreme return levels at ungauged locations:
@ Extrapolation (above the sample maxima at each station),

@ Interpolation (where there is no measure). 22



Extrapolation problem

Let Xi,...,X, be an i.i.d sample from an unknown cdf F, with an asso-
ciated quantile function q. Let us denote by X; , < --- < X, , the order
statistics.
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Empirical c.d.f estimated on the negative returns of the Paris stock index (CAC 40)

[Objective. NN estimation of q(1 — «,) such that na, — 0 as n — oo ]

Challenges.
@ g(1 — ) is larger than the sample maxima X, , (with high proba).

@ Single-layer NN not able to simulate around the max | 1.
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Statistical framework

Focusing on heavy-tailed distributions (F & MDA (Fréchet)), the tail
quantile function g(1 — 1/t),Vt > 1, is regularly varying with tail index
v>0and g(1 —1/t) = t7L(t) with

L(zt)/L(t) > 1ast — o0,Vz >0

Idea. Choose an intermediate sequence 0, s.t. k, := |nd,| — oo, n — o0,

log q(1 — an) — log g(1 — dn) = 7 log (3n/cv) + ¢ (log(dn/cxn), log(1/6n))
=: f(log(6n/ctn),log(1/6n))

with
L(exp(x1 + x2))
x1>0,x% >0)— o(x,x) :=lo (

( ) ebae) =108 { T 0)
Unknown quantities. Weissman. | ]
@ Intermediate quantile g(1 — d,) QO Xo ki1n
@ Tail index v Q (k)1 ]
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Bias correction (second order)

Second order condition. There exist v > 0, p» < 0 and a function A
with A(t) - 0ast — oo st forallz>1

log (LL((Z:))> = Ax(t) /12 27 dz 4 o(A(t)), ast — oo

Ignoring the o(-) term and assuming (Hall-Welsh model)
Ax(t) = vB2t"
with 82 # 0 and p, < 0, give a parametric approximation of ¢(x1, x2) as
Po(x1,x2) = vB2 exp(p2x2)(exp(p2x1) — 1)/ p2

=p2 (UE(Pz (x1+ Xz)) —o" (p2X2)>//)2,

the eLU function.

with 8 = (7, p2, B2) and where 0%(x) = Ly>01x + Liccoy(exp(x) — 1) is
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Bias correction (J-th order)

J-th order condition. There exist v >0, and Vj € {2,...,J}, p; <0
and functions A; with A;(t) - 0ast — ocos.t. forallz>1

log (i((z:))) ZHAg(t)R (z)+o HA ()| ast—o0, (1)

=2 (=

Zj—1
/ < 1/ 253_1---/ zJ-pJ dzj...dzzdz.
1

Assume the J-th order condition holds with A;(t) = c;jt’, where ¢; # 0
and pj <0 forj € {2,...,J}. Then, for all x; >0 and xo >0

|

Proposition

J(J-1)/2

o(x1,x) = Z (1) ( (W(z)Xl + W( )x2> E(Wi(4)X2)) +o(...)

i=1

with w() € R, w® <0, w® <0, wi¥ <0, vie{1,...,JJ-1)/2}.




Results

NN approximation and estimation. For k € {2,...,n— 1},

43" (1= an1—k/n):= q(L — k/n) exp (NNNJ('%("/(”“”)) 'Og(”/k))>

(L= ani 1= k/n) = Xo-kr1.0 exp (™ (log(k/ (na,)), log(n/K)))

where FgNJ(xl,xz) = Wox1 + QEENJ(XLXQ), with wg > 0.

Theorem

Assume conditions of the Proposition hold with p; := p> + -+ pJ.
Then, there exists a one hidden-layer feedforward neural network
approximation with J(J — 1) neurons and 2J(J — 1) parameters such that

inf "Og q(1—ap) —log G5 (1 — ani1—dn)| = O (an 7)),

pcd

asa, — 0 and d,/a, — 0. 7/22



Experiments - Simulated data

( N
@ Simulate ng = 500 replications of n =500 samples Xi, ..., X, from 7

heavy-tailed distributions parametrized by (v, p2).

@ Compute the log-spacings §,~_yk = log Xy—it1,n — log Xpn—k+1,n with
ie{l...,k—1}, ke{2,....,n—1}

@ Fit the approximation f(gNJ(Iog(k/i)7 log(n/k)) by training the neural

network in a regression framework J € [2,5] < [2,10] neurons

@ Estimate at extreme quantile level 1 — «,, =1 — 1/(2n) and compare the

RMedSE with competitors | , ] ]

[ Burr [ NN ] W [ RW | CW | CH | CH, [ PRB, [ CHy,x [PRB
vy=1

p2=-1/8 [[03133] - [08625| - - - - - -
p2=-1/4 | 01962 | - |05423| - - - - - 0.6617
pp=-1/2 | 02142 | - |03201| - 0.0949 | 0.1021 | 0.1488 | 0.0874 | 0.1185
p2=-1 01877 | - | 0.2438 | 0.1289 | 0.4120 | 0.3737 | 0.3761 | 0.3658 | 0.4261
p2=— 0.1432 | 0.2065 | 0.1488 | 0.2115 | 0.3394 | 0.3384 | 0.2893 | 0.2933 | 0.3058

RMedSE associated with eight estimators on five Burr distributions. The best
result is emphasized in bold. Results larger than 1 are not displayed. More re-
sults in [ 1. 8/22



lllustration
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Figure: lllustration on a Burr distribution with v =1 and p € {—2,—1/4} (from top
to bottom). Median of the estimators (left panel) of the extreme quantile (black
dashed line) and RMedSE (right panel), as functions of k € {2,...,n— 1},
associated with W (blue), RW (red), NN (purple).
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Extension to conditional extrapolation

Suppose now X is a r.v. associated with an explanatory random vector
Y € Y C R%, d, > 1. Denote the conditional c.d.f by F(- | y) and the
conditional quantile function by q(- | y).

Boys growth chart - source

[Goal: NN estimation of g(1 — «, | y) such that na,, — 0 for all y. ]

Challenges.
@ Same as in the non-conditional framework.

@ g(1—6,]y) can no longer be estimated by an order statistic. o)


https://upload.wikimedia.org/wikipedia/commons/4/41/CDC_growth_chart_boys_birth_to_36_mths_cj41c017.pdf

A) Conditional Extrapolation Neural Network

Similarly to the non-conditional case, the conditional tail quantile function
is supposed to be regularly varying g(1 — 1/t |y) = t?WL(t | y), with
conditional tail index y(y) >0 (q(1 —1/- | y) € RV,(,)) with

L(zt|y)/L(t]y)=1ast— o0o,Vz>0(L(-|y) € RV)

Idea. Same method as before but now all the 2J(J — 1) + 1 parameters
{(W,-(l), Wi(2), W,.(3), W,-(4)),i € {1,...,J(J—1)/2}} and 7 depend of the
covariate and have to be approximated by appropriate NNs:

ngJ (x1, %2 |y) = ngg) (y)x1 + @gNJ(Xla x2|y)

includes 2J(J — 1) 4+ 1 deep ReLU NNs with ReLU activation functions
o®(x) = max(x, 0).
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An approximation result

Theorem

Suppose the conditional extensions of the assumptions of the Proposition
hold, with all functions {w"(-), ..., w ()}, i€ {1,...,J(J - 1)/2},
and ~(-) are continuous on the compact set Y C R%.

Then, there exists a conditional deep feedforward NN approximation with
O(J?) sub-networks composed by fixed O(d,) neurons in each of the
hidden layers with a minimum depth of magnitude ~ o,P**/2 such that

inf sup llog q(1 — avn | y) — log G5 (1 — cvni 1 = b !y)‘ = O (apP=),
PEP yeY

as oap — 0 and 0, /c, = 00 as n — 0o, where pgup = SUpycy py(y) with
pi(y) = p2(y) + -+ psy).

Conditional neural network estimator.

G (L — 1= 0y | y) == G(L = 3y | y) exp (A™ (1og (6n/1n) ,log (1/61) | ¥))
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B) Location Dispersion Neural Network

Location-dispersion regression model | 1
X=a(Y)+b(Y)Z,

where a: Y — R and b: Y — RT are defined respectively as the location
and the dispersion functions while Z € R is a heavy-tailed r.v. with tail
index v and quantile function gz(-).

Idea. Consider three levels of quantiles 0 < o, < 6, < 7, < 1. Since

q(l —anly) =aly) + b(y)gz(1 — an)

the following combination of quantiles

02 vt s )

is independent of the covariate y. One can apply the non conditional ap-
proximation method to g instead of f.
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An approximation result

Theorem

Assume the location-dispersion model and conditions of Proposition hold
for. Suppose a(-) and b(-) are continuous functions on ) and that b(-) is
bounded from below by a positive constant. Then, there exists a one
hidden-layer NN approximation such that

inf sup |log q(1 — a | y) —log @5 (1 — ap; 1 — 0n, 1= 7, | y)
ped ycy ¢

= O(an™) 4+ O(1,77775,7)

with o, — 0, 0,/7, — 0 and 6,/a, — 00 as n — oo.

Conditional neural network estimator.

“(';NJ(l—a,, — Ol =7, y)=84(1—0,]y)
+ (fl(l - 5n | )/) - CAI(l — Tn | )) NJ (log(én/an)’ Iog(l/én)’ log(5n/Tl1))
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Experiments - Real data

Figure: Historical (1958-2000) daily rainfall maxima in mm per station in the Cévennes-Vivarais region of France.
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Experiments - Real data

[ Experimental design

@ Data: np =15,706 rainfalls X(Y) € R at ns = 524 stations in the
Cévennes-Vivarais region given a covariate Y € R® (long., lat., alt.)

@ Estimate the intermediate conditional quantile by K-NN.

e fix nk neighbors and apply K-NN on Y using the Mahalanobis
distance /(Y — Vi) T2 1(Y;: — Yo), (t,t)) € {1,...,ns}>,

e merge the historical values to the nx — 1 closest stations, leading to
n, = np X nk observations assumed i.i.d within each neighborhood.

@ Train the NNs with the highest unique historical values
{X(re=itLno)(Yy) i€ {2,...,np}, np € {2,...,n0}} forall t € {1,...,ns}.

@ Estimate the quantiles at level 1 — «, =1 —1/n, and compare with all
maximum order statistics X("")(Y;) for all t € {1,...,ns}.

16/22



Influence of hyperparameters ny. n,
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Figure: lllustrations on real data. (a) Example of Hill estimate as a function of k € {2, ..., ny — 1}, within the neighborhood
of a given station with ny = 100 and nkx = 45. The selected k* is depicted by the red circle. (b) Box-plots of estimated 4's as
functions of ny with n, = 100. (c) Histogram of estimated 4's for all stations t € {1, ..., ng} with nx = 45 and n;, = 100.

(d) quantile-quantile plot log(ny/i) — log(X(70 ~it1:m0)(v,)) — log(X(7e=m+1:m0)(v,)) t € {1,...,ns},
i€ {1,...,n, — 1} with ny = 100 and ny = 45.
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Estimation of conditional extreme quantile

(2) CENN (RMedSE=0.0047) () LDNN (RMedSE=0.0022)
~ 2,000 parameters, 2.510° data ~ 10 parameters, 8210° data

Figure: Estimation of the conditional extreme quantile at order 1 —«a, =1 —1/n, at
each station. Squared relative error associated with the CENN (a) and LDNN (b)
models.
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Spatial interpolation

meters

Figure: Spatial interpolation by the CENN quantile estimator at order 1 — acp = 1 — 1/n,. The gray region corresponds to an
area where no interpolation is performed.
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Conclusion

@ Propose a NN architecture as a natural bias reduced extreme quantile
estimator,

@ Prove uniform convergence rates of the NN approximation error in
extreme quantile estimation in both non-conditional and conditional
settings,

@ Outperform other competitors in hard heavy-tailed simulations,
@ lllustrate the conditional extrapolation on real data.

@ Extension to the estimation of more general risk
measures [ I
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