Estimation of extreme quantiles from heavy-tailed distributions with neural networks

Michaël Allouche

Stéphane Girard Emmanuel Gobet

February 2025

Innin

Motivations

Figure: Historical (1958-2000) daily rainfall maxima in mm per station in the Cévennes-Vivarais region of France.

How to compute extreme return levels at ungauged locations:

- Extrapolation (above the sample maxima at each station),
- Interpolation (where there is no measure).

Extrapolation problem

Let X_1, \ldots, X_n be an i.i.d sample from an unknown cdf F, with an associated quantile function q. Let us denote by $X_{1,n} \leq \cdots \leq X_{n,n}$ the order statistics.

Objective. NN estimation of $q(1 - \alpha_n)$ such that $n\alpha_n \to 0$ as $n \to \infty$

Challenges.

- $q(1 \alpha_n)$ is larger than the sample maxima $X_{n,n}$ (with high proba).
- Single-layer NN not able to simulate around the max [Allouche et al., 2022].

Statistical framework

Focusing on heavy-tailed distributions ($F \in MDA(Fréchet)$), the tail quantile function $q(1-1/t), \forall t > 1$, is **regularly varying** with tail index $\gamma > 0$ and $q(1-1/t) = t^{\gamma}L(t)$ with

L(zt)/L(t)
ightarrow 1 as $t
ightarrow \infty, orall z > 0$

Idea. Choose an intermediate sequence δ_n s.t. $k_n := \lfloor n \delta_n \rfloor \to \infty, n \to \infty$,

$$\log q(1 - \alpha_n) - \log q(1 - \delta_n) = \gamma \log (\delta_n / \alpha_n) + \varphi (\log(\delta_n / \alpha_n), \log(1 / \delta_n))$$
$$=: f (\log(\delta_n / \alpha_n), \log(1 / \delta_n))$$

with

$$(x_1 > 0, x_2 > 0) \mapsto arphi(x_1, x_2) := \log\left(rac{L(\exp(x_1 + x_2))}{L(\exp(x_2))}
ight)$$

Unknown quantities.

- **1** Intermediate quantile $q(1 \delta_n)$
- 2 Tail index γ

3 Log-spacing function $\varphi(\cdot, \cdot)$

Weissman. [Weissman, 1978]

 Image:
$$X_{n-k+1,n}$$

 Image: $\hat{\gamma}(k)$ [Hill, 1975]

 Image: Image:

Bias correction (second order)

Second order condition. There exist $\gamma > 0$, $\rho_2 \leq 0$ and a function A_2 with $A_2(t) \rightarrow 0$ as $t \rightarrow \infty$ s.t. for all $z \geq 1$

$$\log\left(\frac{L(zt)}{L(t)}\right) = A_2(t) \int_1^z z_2^{\rho_2 - 1} \,\mathrm{d}z_2 + o(A_2(t)), \quad \text{ as } t \to \infty$$

Ignoring the $o(\cdot)$ term and assuming (Hall-Welsh model)

$$A_2(t) = \gamma \beta_2 t^{\rho_2}$$

with $\beta_2 \neq 0$ and $\rho_2 < 0$, give a parametric approximation of $\varphi(x_1, x_2)$ as

$$\begin{split} \widetilde{\varphi}_{\theta}(x_1, x_2) &= \gamma \beta_2 \exp(\rho_2 x_2) (\exp(\rho_2 x_1) - 1) / \rho_2 \\ &= \gamma \beta_2 \Big(\sigma^{\mathsf{E}} \big(\rho_2 \left(x_1 + x_2 \right) \big) - \sigma^{\mathsf{E}} \left(\rho_2 x_2 \right) \Big) / \rho_2, \end{split}$$

with $\theta = (\gamma, \rho_2, \beta_2)$ and where $\sigma^{\mathbb{E}}(x) = \mathbb{1}_{\{x \ge 0\}} x + \mathbb{1}_{\{x < 0\}}(\exp(x) - 1)$ is the **eLU** function.

Bias correction (J-th order)

J-th order condition. There exist $\gamma > 0$, and $\forall j \in \{2, ..., J\}$, $\rho_j \leq 0$ and functions A_j with $A_j(t) \to 0$ as $t \to \infty$ s.t. for all $z \geq 1$

$$\log\left(\frac{L(zt)}{L(t)}\right) = \sum_{j=2}^{J} \prod_{\ell=2}^{j} A_{\ell}(t) R_{j}(z) + o\left(\prod_{j=2}^{J} A_{j}(t)\right) \text{ as } t \to \infty, \quad (1)$$
$$R_{j}(z) = \int_{1}^{z} z_{2}^{\rho_{2}-1} \int_{1}^{z_{2}} z_{3}^{\rho_{3}-1} \cdots \int_{1}^{z_{j-1}} z_{j}^{\rho_{j}-1} dz_{j} \dots dz_{3} dz_{2}.$$

Proposition

Assume the J-th order condition holds with $A_j(t) = c_j t^{\rho_j}$, where $c_j \neq 0$ and $\rho_j < 0$ for $j \in \{2, ..., J\}$. Then, for all $x_1 > 0$ and $x_2 > 0$

$$\varphi(x_1, x_2) = \sum_{i=1}^{J(J-1)/2} w_i^{(1)} \left(\sigma^{\mathbb{E}} \left(w_i^{(2)} x_1 + w_i^{(3)} x_2 \right) - \sigma^{\mathbb{E}} \left(w_i^{(4)} x_2 \right) \right) + o(\dots)$$

with $w_i^{(1)} \in \mathbb{R}$, $w_i^{(2)} < 0$, $w_i^{(3)} < 0$, $w_i^{(4)} < 0$, $\forall i \in \{1, \ldots, J(J-1)/2\}$.

Results

Theorem

Assume conditions of the Proposition hold with $\bar{\rho}_J := \rho_2 + \cdots + \rho_J$. Then, there exists a **one hidden-layer** feedforward neural network approximation with J(J-1) neurons and 2J(J-1) parameters such that

$$\inf_{\tilde{\phi} \in \Phi} \left| \log q(1 - \alpha_n) - \log \tilde{q}_{\tilde{\phi}}^{\mathbb{NN}_J}(1 - \alpha_n; 1 - \delta_n) \right| = \mathcal{O}\left(\alpha_n^{-\bar{\rho}_J} \right),$$

as
$$\alpha_n \to 0$$
 and $\delta_n / \alpha_n \to \infty$.

Experiments - Simulated data

- Simulate n_R = 500 replications of n =500 samples X₁,..., X_n from 7 heavy-tailed distributions parametrized by (γ, ρ₂).
- Compute the log-spacings $\hat{S}_{i,k} := \log X_{n-i+1,n} \log X_{n-k+1,n}$ with $i \in \{1..., k-1\}, k \in \{2, ..., n-1\}$
- Fit the approximation f^{NNJ}_φ(log(k/i), log(n/k)) by training the neural network in a regression framework J ∈ [2,5] ⇔ [2,10] neurons
- Estimate at extreme quantile level $1 \alpha_n = 1 1/(2n)$ and compare the RMedSE with competitors [Gomes and Pestana, 2007, Allouche et al., 2023]

Burr	NN	W	RW	CW	CH	CH _p	PRB _p	CH _p ∗	PRB _p ∗
$\gamma = 1$									
$\rho_2 = -1/8$	0.3133	-	0.8625	-	-	-	-	-	-
$ \rho_2 = -1/4 $	0.1962	-	0.5423	-	-	-	-	-	0.6617
$ \rho_2 = -1/2 $	0.2142	-	0.3291	-	0.0949	0.1021	0.1488	0.0874	0.1185
$ \rho_2 = -1 $	0.1877	-	0.2438	0.1289	0.4120	0.3737	0.3761	0.3658	0.4261
$ \rho_2 = -2 $	0.1432	0.2065	0.1488	0.2115	0.3394	0.3384	0.2893	0.2933	0.3058

RMedSE associated with eight estimators on five Burr distributions. The best result is emphasized in **bold**. Results larger than 1 are not displayed. More results in [Allouche et al., 2024].

Illustration

Figure: Illustration on a Burr distribution with $\gamma = 1$ and $\rho \in \{-2, -1/4\}$ (from top to bottom). Median of the estimators (left panel) of the extreme quantile (black dashed line) and RMedSE (right panel), as functions of $k \in \{2, ..., n-1\}$, associated with W (blue), RW (red), NN (purple).

Extension to conditional extrapolation

Suppose now X is a r.v. associated with an explanatory random vector $Y \in \mathcal{Y} \subset \mathbb{R}^{d_y}, d_y \geq 1$. Denote the conditional c.d.f by $F(\cdot \mid y)$ and the conditional quantile function by $q(\cdot \mid y)$.

Goal: NN estimation of $q(1 - \alpha_n | y)$ such that $n\alpha_n \to 0$ for all y.

Challenges.

- Same as in the non-conditional framework.
- $q(1 \delta_n | y)$ can no longer be estimated by an order statistic.

10/22

A) Conditional Extrapolation Neural Network

Similarly to the non-conditional case, the conditional tail quantile function is supposed to be **regularly varying** $q(1 - 1/t | y) = t^{\gamma(y)}L(t | y)$, with conditional tail index $\gamma(y) > 0$ $(q(1 - 1/\cdot | y) \in \mathcal{RV}_{\gamma(y)})$ with

 $L(zt \mid y)/L(t \mid y) = 1 \text{ as } t \to \infty, \forall z > 0 (L(\cdot \mid y) \in \mathcal{RV}_0)$

Idea. Same method as before but now all the 2J(J-1) + 1 parameters $\{(w_i^{(1)}, w_i^{(2)}, w_i^{(3)}, w_i^{(4)}), i \in \{1, \dots, J(J-1)/2\}\}$ and γ depend of the covariate and have to be approximated by appropriate NNs:

$$ilde{f}^{ ext{NN}_J}_{ ilde{\phi}}(x_1,x_2 \mid y) = ilde{w}^{ ext{NN}}_{ ilde{ heta}(0)}(y) x_1 + ilde{arphi}^{ ext{NN}_J}_{ ilde{ heta}}(x_1,x_2 \mid y)$$

includes 2J(J - 1) + 1 deep ReLU NNs with ReLU activation functions $\sigma^{R}(x) = \max(x, 0)$.

An approximation result

Theorem

Suppose the **conditional** extensions of the assumptions of the Proposition hold, with all functions $\{w_i^{(1)}(\cdot), \ldots, w_i^{(4)}(\cdot)\}, i \in \{1, \ldots, J(J-1)/2\}$, and $\gamma(\cdot)$ are **continuous** on the compact set $\mathcal{Y} \subset \mathbb{R}^{d_y}$. Then, there exists a conditional **deep** feedforward NN approximation with $\mathcal{O}(J^2)$ sub-networks composed by fixed $\mathcal{O}(d_y)$ neurons in each of the hidden layers with a minimum depth of magnitude $\simeq \alpha_n^{\overline{\rho}_{sup}/2}$ such that

$$\inf_{\tilde{\phi} \in \Phi} \sup_{y \in \mathcal{Y}} \left| \log q(1 - \alpha_n \mid y) - \log \tilde{q}_{\tilde{\phi}}^{\text{NN}}(1 - \alpha_n; 1 - \delta_n \mid y) \right| = \mathcal{O}\left(\alpha_n^{-\bar{\rho}_{\sup}}\right),$$

as $\alpha_n \to 0$ and $\delta_n / \alpha_n \to \infty$ as $n \to \infty$, where $\bar{\rho}_{\sup} = \sup_{y \in \mathcal{Y}} \bar{\rho}_J(y)$ with $\bar{\rho}_J(y) = \rho_2(y) + \cdots + \rho_J(y)$.

Conditional neural network estimator.

$$\hat{q}_{\hat{\phi}}^{\text{NN}_J}(1-\alpha_n; 1-\delta_n \mid y) := \hat{q}(1-\delta_n \mid y) \exp\left(\tilde{f}_{\hat{\phi}}^{\text{NN}_J}(\log\left(\delta_n/\alpha_n\right), \log\left(1/\delta_n\right) \mid y)\right)$$

B) Location Dispersion Neural Network

Location-dispersion regression model [Van Keilegom and Wang, 2010] :

X = a(Y) + b(Y)Z,

where $a: \mathcal{Y} \to \mathbb{R}$ and $b: \mathcal{Y} \to \mathbb{R}^+$ are defined respectively as the **location** and the **dispersion** functions while $Z \in \mathbb{R}$ is a heavy-tailed r.v. with tail index γ and quantile function $q_Z(\cdot)$.

Idea. Consider three levels of quantiles $0 < \alpha_n < \delta_n < \tau_n < 1$. Since

$$q(1 - \alpha_n \mid y) = a(y) + b(y)q_Z(1 - \alpha_n)$$

the following combination of quantiles

$$\frac{q(1-\alpha_n \mid y) - q(1-\delta_n \mid y)}{q(1-\delta_n \mid y) - q(1-\tau_n \mid y)} = g\big(\log(\delta_n/\alpha_n), \log(1/\delta_n), \log(\delta_n/\tau_n)\big)$$

is independent of the covariate y. One can apply the non conditional approximation method to g instead of f.

Theorem

Assume the location-dispersion model and conditions of Proposition hold for. Suppose $a(\cdot)$ and $b(\cdot)$ are continuous functions on \mathcal{Y} and that $b(\cdot)$ is bounded from below by a positive constant. Then, there exists a **one hidden-layer** NN approximation such that

$$\begin{split} &\inf_{\tilde{b}\in\Phi}\sup_{y\in\mathcal{Y}} \left|\log q(1-\alpha_n \mid y) - \log \tilde{q}_{\tilde{\phi}}^{\mathbb{N}N_J}(1-\alpha_n; 1-\delta_n, 1-\tau_n \mid y) \right. \\ &= \mathcal{O}(\alpha_n^{-\bar{\rho}_J}) + \mathcal{O}(\tau_n^{-\bar{\rho}_J - \gamma}\delta_n^{\gamma}) \end{split}$$

with $\alpha_n \to 0$, $\delta_n/\tau_n \to 0$ and $\delta_n/\alpha_n \to \infty$ as $n \to \infty$.

Conditional neural network estimator.

$$\begin{aligned} \hat{q}_{\hat{\phi}}^{\text{NN}_{j}}(1-\alpha_{n};1-\delta_{n},1-\tau_{n} \mid y) &= \hat{q}(1-\delta_{n} \mid y) \\ &+ \left(\hat{q}(1-\delta_{n} \mid y) - \hat{q}(1-\tau_{n} \mid y)\right) \tilde{g}_{\hat{\phi}}^{\text{NN}_{j}}\left(\log(\delta_{n}/\alpha_{n}),\log(1/\delta_{n}),\log(\delta_{n}/\tau_{n})\right) \end{aligned}$$

Experiments - Real data

Figure: Historical (1958-2000) daily rainfall maxima in mm per station in the Cévennes-Vivarais region of France.

Experimental design

- Data: n_D =15,706 rainfalls X(Y) ∈ ℝ at n_S = 524 stations in the Cévennes-Vivarais region given a covariate Y ∈ ℝ³ (long., lat., alt.)
- Estimate the intermediate conditional quantile by K-NN.
 - fix n_{K} neighbors and apply K-NN on Y using the Mahalanobis distance $\sqrt{(Y_{t} Y_{t'})^{\top} \Sigma^{-1}(Y_{t} Y_{t'})}, (t, t') \in \{1, \dots, n_{S}\}^{2}$,
 - merge the historical values to the $n_K 1$ closest stations, leading to $n_o = n_D \times n_K$ observations assumed i.i.d within each neighborhood.
- Train the NNs with the highest unique historical values $\{X^{(n_o-i+1,n_o)}(Y_t), i \in \{2,\ldots,n_h\}, n_h \in \{2,\ldots,n_o\}\}$ for all $t \in \{1,\ldots,n_S\}$.

Estimate the quantiles at level 1 − α_n = 1 − 1/n_o and compare with all maximum order statistics X^(n_o,n_o)(Y_t) for all t ∈ {1,...,n_s}.

Influence of hyperparameters n_K, n_h

Figure: Illustrations on real data. (a) Example of Hill estimate as a function of $k \in \{2, \ldots, n_h - 1\}$, within the neighborhood of a given station with $n_h = 100$ and $n_K = 45$. The selected k^* is depicted by the red circle. (b) Box-plots of estimated $\hat{\gamma}$'s as functions of n_K with $n_h = 100$. (c) Histogram of estimated $\hat{\gamma}$'s for all stations $t \in \{1, \ldots, n_S\}$ with $n_K = 45$ and $n_h = 100$. (d) quantile-quantile plot $\log(n_h/i) \mapsto \log(X^{(n_O - i+1, n_O)}(Y_t)) - \log(X^{(n_O - n_h+1, n_O)}(Y_t))$, $t \in \{1, \ldots, n_S\}$, $i \in \{1, \ldots, n_h - 1\}$ with $n_h = 100$ and $n_K = 45$.

Estimation of conditional extreme quantile

 $_{(a)}$ CENN (RMedSE=0.0047) $\sim 2,000$ parameters, $2.5\,10^6$ data

 $_{(b)}$ LDNN (RMedSE=0.0022) ~ 10 parameters, $82\,10^6$ data

Figure: Estimation of the conditional extreme quantile at order $1 - \alpha_n = 1 - 1/n_o$ at each station. Squared relative error associated with the CENN (a) and LDNN (b) models.

Spatial interpolation

Figure: Spatial interpolation by the CENN quantile estimator at order $1 - \alpha_n = 1 - 1/n_o$. The gray region corresponds to an area where no interpolation is performed.

- Propose a NN architecture as a natural bias reduced extreme quantile estimator,
- Prove uniform convergence rates of the NN approximation error in extreme quantile estimation in both non-conditional and conditional settings,
- Outperform other competitors in hard heavy-tailed simulations,
- Illustrate the conditional extrapolation on real data.
- Extension to the estimation of more general risk measures [Allouche et al., 2025].

References I

- Allouche, M., El Methni, J., and Girard, S. (2023). A refined Weissman estimator for extreme quantiles. *Extremes*, 26(3):545–572.
- Allouche, M., Girard, S., and Gobet, E. (2022).
 EV-GAN: Simulation of extreme events with ReLU neural networks.
 Journal of Machine Learning Research, 23(150):1–39.
 - Allouche, M., Girard, S., and Gobet, E. (2024). Estimation of extreme quantiles from heavy-tailed distributions with neural networks.

Statistics and Computing, 34:12.

Allouche, M., Girard, S., and Gobet, E. (2025).

Learning extreme expected shortfall and conditional tail moments with neural networks. application to cryptocurrency data. *Neural Networks*, 182:106903.

References II

Gomes, M. and Pestana, D. (2007).

A sturdy reduced-bias extreme quantile (VaR) estimator.

Journal of the American Statistical Association, 102(477):280–292.

📔 Hill, B. M. (1975).

A simple general approach to inference about the tail of a distribution. *The Annals of Statistics*, 3(5):1163–1174.

Van Keilegom, I. and Wang, L. (2010). Semiparametric modeling and estimation of heteroscedasticity in regression analysis of cross-sectional data. *Electronic Journal of Statistics*, 4:133–160.

Weissman, I. (1978).

Estimation of parameters and large quantiles based on the k largest observations.

Journal of the American Statistical Association, 73(364):812-815.