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Motivations
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Figure: Historical (1958-2000) daily rainfall maxima in mm per station in the Cévennes-Vivarais region of France.

How to compute extreme return levels at ungauged locations:

Extrapolation (above the sample maxima at each station),

Interpolation (where there is no measure).
2 / 22



Extrapolation problem
Let X1, . . . ,Xn be an i.i.d sample from an unknown cdf F , with an asso-
ciated quantile function q. Let us denote by X1,n ≤ · · · ≤ Xn,n the order
statistics.
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Empirical c.d.f estimated on the negative returns of the Paris stock index (CAC 40)

︸︷︷︸
?

Objective. NN estimation of q(1− αn) such that nαn → 0 as n→∞

Challenges.

q(1− αn) is larger than the sample maxima Xn,n (with high proba).

Single-layer NN not able to simulate around the max [Allouche et al., 2022].
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Statistical framework
Focusing on heavy-tailed distributions (F ∈ MDA(Fréchet)), the tail
quantile function q(1− 1/t), ∀t > 1, is regularly varying with tail index
γ > 0 and q(1− 1/t) = tγL(t) with

L(zt)/L(t)→ 1 as t →∞, ∀z > 0

Idea. Choose an intermediate sequence δn s.t. kn := bnδnc → ∞, n→∞,

log q(1− αn)− log q(1− δn) = γ log (δn/αn) + ϕ
(

log(δn/αn), log(1/δn)
)

=: f
(

log(δn/αn), log(1/δn)
)

with
(x1 > 0, x2 > 0) 7→ ϕ(x1, x2) := log

(
L(exp(x1 + x2))

L(exp(x2))

)
Unknown quantities.

1 Intermediate quantile q(1− δn)

2 Tail index γ

3 Log-spacing function ϕ(·, ·)

Weissman. [Weissman, 1978]

1 Xn−k+1,n

2 γ̂(k) [Hill, 1975]
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Bias correction (second order)

Second order condition. There exist γ > 0, ρ2 ≤ 0 and a function A2

with A2(t)→ 0 as t →∞ s.t. for all z ≥ 1

log

(
L(zt)

L(t)

)
= A2(t)

∫ z

1
zρ2−1

2 dz2 + o(A2(t)), as t →∞

Ignoring the o(·) term and assuming (Hall-Welsh model)

A2(t) = γβ2t
ρ2

with β2 6= 0 and ρ2 < 0, give a parametric approximation of ϕ(x1, x2) as

ϕ̃θ(x1, x2) = γβ2 exp(ρ2x2)(exp(ρ2x1)− 1)/ρ2

= γβ2

(
σE
(
ρ2 (x1 + x2)

)
− σE (ρ2x2)

)
/ρ2,

with θ = (γ, ρ2, β2) and where σE(x) = 1{x≥0}x + 1{x<0}(exp(x) − 1) is
the eLU function.
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Bias correction (J-th order)
J-th order condition. There exist γ > 0, and ∀j ∈ {2, . . . , J}, ρj ≤ 0
and functions Aj with Aj(t)→ 0 as t →∞ s.t. for all z ≥ 1

log

(
L(zt)

L(t)

)
=

J∑
j=2

j∏
`=2

A`(t)Rj(z) + o

 J∏
j=2

Aj(t)

 as t →∞, (1)

Rj(z) =

∫ z

1
zρ2−1

2

∫ z2

1
zρ3−1

3 · · ·
∫ zj−1

1
z
ρj−1
j dzj . . . dz3 dz2.

Proposition

Assume the J-th order condition holds with Aj(t) = cj t
ρj , where cj 6= 0

and ρj < 0 for j ∈ {2, . . . , J}. Then, for all x1 > 0 and x2 > 0

ϕ(x1, x2) =

J(J−1)/2∑
i=1

w
(1)
i

(
σE
(
w

(2)
i x1 + w

(3)
i x2

)
− σE(w

(4)
i x2)

)
+ o (...)

with w
(1)
i ∈ R, w

(2)
i < 0, w

(3)
i < 0, w

(4)
i < 0, ∀i ∈ {1, . . . , J(J − 1)/2}.
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Results

NN approximation and estimation. For k ∈ {2, . . . , n − 1},

q̃NNJ
φ̃

(1− αn; 1− k/n) := q(1− k/n) exp
(
f̃ NNJ
φ̃

(log(k/(nαn)), log(n/k))
)

q̂NNJ
φ̂

(1− αn; 1− k/n) := Xn−k+1,n exp
(
f̃ NNJ
φ̂

(log(k/(nαn)), log(n/k))
)

where f̃ NNJ
φ̂

(x1, x2) := ŵ0x1 + ϕ̃NNJ
φ̂

(x1, x2), with ŵ0 > 0.

Theorem

Assume conditions of the Proposition hold with ρ̄J := ρ2 + · · ·+ ρJ .
Then, there exists a one hidden-layer feedforward neural network
approximation with J(J − 1) neurons and 2J(J − 1) parameters such that

inf
φ̃∈Φ

∣∣∣log q(1− αn)− log q̃NNJ
φ̃

(1− αn; 1− δn)
∣∣∣ = O

(
αn
−ρ̄J
)
,

as αn → 0 and δn/αn →∞. 7 / 22



Experiments - Simulated data

Simulate nR = 500 replications of n =500 samples X1, . . . ,Xn from 7
heavy-tailed distributions parametrized by (γ, ρ2).

Compute the log-spacings Ŝi,k := logXn−i+1,n − logXn−k+1,n with
i ∈ {1 . . . , k − 1}, k ∈ {2, . . . , n − 1}

Fit the approximation f̃ NNJ
φ̂

(log(k/i), log(n/k)) by training the neural

network in a regression framework J ∈ [2, 5]⇔ [2, 10] neurons

Estimate at extreme quantile level 1− αn = 1− 1/(2n) and compare the
RMedSE with competitors [Gomes and Pestana, 2007, Allouche et al., 2023]

Burr NN W RW CW CH CHp PRBp CHp? PRBp?

γ = 1

ρ2 = −1/8 0.3133 - 0.8625 - - - - - -
ρ2 = −1/4 0.1962 - 0.5423 - - - - - 0.6617
ρ2 = −1/2 0.2142 - 0.3291 - 0.0949 0.1021 0.1488 0.0874 0.1185
ρ2 = −1 0.1877 - 0.2438 0.1289 0.4120 0.3737 0.3761 0.3658 0.4261
ρ2 = −2 0.1432 0.2065 0.1488 0.2115 0.3394 0.3384 0.2893 0.2933 0.3058

RMedSE associated with eight estimators on five Burr distributions. The best

result is emphasized in bold. Results larger than 1 are not displayed. More re-

sults in [Allouche et al., 2024]. 8 / 22



Illustration

0 100 200 300 400 500
600

700

800

900

1000

1100

1200

1300

1400

0 100 200 300 400 500
0.0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500

300

400

500

600

700

800

900

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

Figure: Illustration on a Burr distribution with γ = 1 and ρ ∈ {−2,−1/4} (from top
to bottom). Median of the estimators (left panel) of the extreme quantile (black
dashed line) and RMedSE (right panel), as functions of k ∈ {2, . . . , n − 1},
associated with W (blue), RW (red), NN (purple).
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Extension to conditional extrapolation
Suppose now X is a r.v. associated with an explanatory random vector
Y ∈ Y ⊂ Rdy , dy ≥ 1. Denote the conditional c.d.f by F (· | y) and the
conditional quantile function by q(· | y).

L

E

N

G

T

H

L

E

N

G

T

H

W

E

I

G

H

T

W

E

I

G

H

T

Birth 3 96

Birth 3 1296 18 21 24 27 30 33 3615

2

3

4

5

6

7

10

12

14

16

8

6

kglb

AGE (MONTHS)

12 15 18 21 24 27 30 33 36
kg

Mother’s Stature

Father’s Stature

Gestational

Date Age Weight Length Head Circ.

Age: Weeks

Birth

Comment

AGE (MONTHS)

8

9

10

11

12

13

14

15

16

17

90

95

100

cmcm

100

lb

16

18

20

22

24

26

28

30

32

34

36

3895

90

75

50

25

10

5

40

45

50

55

60

65

70

75

80

90

95

85

95

90

75

50

25

10
5

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41
in in

41

40

39

38

37

36

35

SOURCE: Developed by the National Center for Health Statistics in collaboration with

the National Center for Chronic Disease Prevention and Health Promotion (2000).

http://www.cdc.gov/growthcharts

Birth to 36 months: Boys

L Weight-for-age percentilesength-for-age and

NAME

RECORD #

Published May 30, 2000 (modified 4/20/01).

B
oy

s
g

ro
w

th
ch

ar
t

-
so

u
rc

e

Goal: NN estimation of q(1− αn | y) such that nαn → 0 for all y .

Challenges.

Same as in the non-conditional framework.

q(1− δn | y) can no longer be estimated by an order statistic.
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A) Conditional Extrapolation Neural Network

Similarly to the non-conditional case, the conditional tail quantile function
is supposed to be regularly varying q(1− 1/t | y) = tγ(y)L(t | y), with
conditional tail index γ(y) > 0 (q(1− 1/ · | y) ∈ RVγ(y)) with

L(zt | y)/L(t | y) = 1 as t →∞, ∀z > 0 (L(· | y) ∈ RV0)

Idea. Same method as before but now all the 2J(J − 1) + 1 parameters

{(w (1)
i ,w

(2)
i ,w

(3)
i ,w

(4)
i ), i ∈ {1, . . . , J(J − 1)/2}} and γ depend of the

covariate and have to be approximated by appropriate NNs:

f̃ NNJ
φ̃

(x1, x2 | y) = w̃NN
θ̃(0)(y)x1 + ϕ̃NNJ

θ̃
(x1, x2 | y)

includes 2J(J − 1) + 1 deep ReLU NNs with ReLU activation functions
σR(x) = max(x , 0).
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An approximation result

Theorem

Suppose the conditional extensions of the assumptions of the Proposition

hold, with all functions {w (1)
i (·), . . . ,w (4)

i (·)}, i ∈ {1, . . . , J(J − 1)/2},
and γ(·) are continuous on the compact set Y ⊂ Rdy .
Then, there exists a conditional deep feedforward NN approximation with
O(J2) sub-networks composed by fixed O(dy ) neurons in each of the
hidden layers with a minimum depth of magnitude ' αn

ρ̄sup/2 such that

inf
φ̃∈Φ

sup
y∈Y

∣∣∣log q(1− αn | y)− log q̃NNJ
φ̃

(1− αn; 1− δn | y)
∣∣∣ = O

(
αn
−ρ̄sup) ,

as αn → 0 and δn/αn →∞ as n→∞, where ρ̄sup = supy∈Y ρ̄J(y) with
ρ̄J(y) = ρ2(y) + · · ·+ ρJ(y).

Conditional neural network estimator.

q̂NNJ
φ̂

(1− αn; 1− δn | y) := q̂(1− δn | y) exp
(
f̃ NNJ
φ̂

(log (δn/αn) , log (1/δn) | y)
)
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B) Location Dispersion Neural Network

Location-dispersion regression model [Van Keilegom and Wang, 2010] :

X = a(Y ) + b(Y )Z ,

where a : Y → R and b : Y → R+ are defined respectively as the location
and the dispersion functions while Z ∈ R is a heavy-tailed r.v. with tail
index γ and quantile function qZ (·).

Idea. Consider three levels of quantiles 0 < αn < δn < τn < 1. Since

q(1− αn | y) = a(y) + b(y)qZ (1− αn)

the following combination of quantiles

q(1− αn | y)− q(1− δn | y)

q(1− δn | y)− q(1− τn | y)
= g

(
log(δn/αn), log(1/δn), log(δn/τn)

)
is independent of the covariate y . One can apply the non conditional ap-
proximation method to g instead of f .
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An approximation result

Theorem

Assume the location-dispersion model and conditions of Proposition hold
for. Suppose a(·) and b(·) are continuous functions on Y and that b(·) is
bounded from below by a positive constant. Then, there exists a one
hidden-layer NN approximation such that

inf
φ̃∈Φ

sup
y∈Y

∣∣∣log q(1− αn | y)− log q̃NNJ
φ̃

(1− αn; 1− δn, 1− τn | y)
∣∣∣

= O(αn
−ρ̄J ) +O(τn

−ρ̄J−γδn
γ)

with αn → 0, δn/τn → 0 and δn/αn →∞ as n→∞.

Conditional neural network estimator.

q̂NNJ
φ̂

(1− αn; 1− δn, 1− τn | y) = q̂(1− δn | y)

+ (q̂(1− δn | y)− q̂(1− τn | y)) g̃NNJ

φ̂
(log(δn/αn), log(1/δn), log(δn/τn))
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Experiments - Real data
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Figure: Historical (1958-2000) daily rainfall maxima in mm per station in the Cévennes-Vivarais region of France.
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Experiments - Real data

Experimental design

Data: nD =15,706 rainfalls X (Y ) ∈ R at nS = 524 stations in the
Cévennes-Vivarais region given a covariate Y ∈ R3 (long., lat., alt.)

Estimate the intermediate conditional quantile by K-NN.

fix nK neighbors and apply K-NN on Y using the Mahalanobis
distance

√
(Yt − Yt′)>Σ−1(Yt − Yt′), (t, t

′) ∈ {1, . . . , nS}2,
merge the historical values to the nK − 1 closest stations, leading to
no = nD × nK observations assumed i.i.d within each neighborhood.

Train the NNs with the highest unique historical values{
X (no−i+1,no)(Yt), i ∈ {2, . . . , nh}, nh ∈ {2, . . . , no}

}
for all t ∈ {1, . . . , nS}.

Estimate the quantiles at level 1− αn = 1− 1/no and compare with all
maximum order statistics X (no ,no)(Yt) for all t ∈ {1, . . . , nS}.
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Influence of hyperparameters nK , nh
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Figure: Illustrations on real data. (a) Example of Hill estimate as a function of k ∈ {2, . . . , nh − 1}, within the neighborhood
of a given station with nh = 100 and nK = 45. The selected k? is depicted by the red circle. (b) Box-plots of estimated γ̂’s as
functions of nK with nh = 100. (c) Histogram of estimated γ̂’s for all stations t ∈ {1, . . . , nS} with nK = 45 and nh = 100.

(d) quantile-quantile plot log(nh/i) 7→ log(X (no−i+1,no )(Yt ))− log(X (no−nh+1,no )(Yt )), t ∈ {1, . . . , nS},
i ∈ {1, . . . , nh − 1} with nh = 100 and nK = 45.
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Estimation of conditional extreme quantile
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(a) CENN (RMedSE=0.0047)
∼ 2, 000 parameters, 2.5 106 data
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(b) LDNN (RMedSE=0.0022)
∼ 10 parameters, 82 106 data

Figure: Estimation of the conditional extreme quantile at order 1− αn = 1− 1/no at
each station. Squared relative error associated with the CENN (a) and LDNN (b)
models.

18 / 22



Spatial interpolation
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Figure: Spatial interpolation by the CENN quantile estimator at order 1− αn = 1− 1/no . The gray region corresponds to an
area where no interpolation is performed.
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Conclusion

Propose a NN architecture as a natural bias reduced extreme quantile
estimator,

Prove uniform convergence rates of the NN approximation error in
extreme quantile estimation in both non-conditional and conditional
settings,

Outperform other competitors in hard heavy-tailed simulations,

Illustrate the conditional extrapolation on real data.

Extension to the estimation of more general risk
measures [Allouche et al., 2025].
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