High Dimensional Kullback-Leibler divergence for grassland classification using satellite image time series with high spatial resolution

Presented by Mailys Lopes¹ In collaboration with Mathieu Fauvel¹, Stéphane Girard² and David Sheeren¹

¹Dynafor, INRA, University of Toulouse, France ²Team Mistis, INRIA Grenoble, France

High Dimensional Divergence for measuring grassland similarity	

Study objectives

Agroecological application Grassland management practices

Data SITS* with high spatial (\approx 10m) resolution and temporal (2-3 images per month) resolution *satellite image time series

Method

Supervised classification at the object scale

Mailys Lopes

Dynafor, University of Toulouse, France

Context	High Dimensional Divergence for measuring grassland similarity	

Context

High Dimensional Divergence for measuring grassland similarity

Experimental results

Conclusion

Mailys Lopes

Context	High Dimensional Divergence for measuring grassland similarity	
000		
	of grasslands	

We propose to use **dense multispectral time series with high spatial resolution** to characterize grasslands.

Grasslands in Europe are:

- Relatively small ($\approx 100 \text{m} \times 100 \text{m}$) \Rightarrow need high spatial resolution images
- Heterogeneous ⇒ need multispectral images
- Natural cycle disturbed by human activities ⇒ need SITS

Mowing

Grazing

Mailys Lopes

Context	High Dimensional Divergence for measuring grassland similarity	
000		
	of grasslands	

We propose to use **dense multispectral time series with high spatial resolution** to characterize grasslands.

Grasslands in Europe are:

- Relatively small ($\approx 100 \text{m} \times 100 \text{m}$) \Rightarrow need high spatial resolution images
- Heterogeneous ⇒ need multispectral images
- Natural cycle disturbed by human activities ⇒ need SITS

Mowing

Grazing

Mailys Lopes

Context	High Dimensional Divergence for measuring grassland similarity	
000		
	of grasslands	

We propose to use **dense multispectral time series with high spatial resolution** to characterize grasslands.

Grasslands in Europe are:

- Relatively small ($\approx 100 \text{m} \times 100 \text{m}$) \Rightarrow need high spatial resolution images
- Heterogeneous ⇒ need multispectral images
- Natural cycle disturbed by human activities ⇒ need SITS

Mowing

Grazing

Mailys Lopes

Context		
000		
Statistical problem		

• Learn f such as $y_i = f(\mathbf{X}_i)$, where y_i is the predicted label

• $\mathbf{X}_i = \begin{bmatrix} \mathbf{x}_{i1} | ... | \mathbf{x}_{in_i} \end{bmatrix}$ is a matrix of size $(n_i \times d)$ that contains all the pixels inside g_i

with

- g_i grassland with index i,
- **n**_i number of pixels in grassland g_i
- k pixel index, $k \in \{1, ..., n_i\}$
- d length of time series
- $x_{ik}(t_l)$ NDVI value of pixel k at time l

Mailys Lopes

Dynafor, University of Toulouse, France

Context	High Dimensional Divergence for measuring grassland similarity	
000		

Thematic contributions

- Grassland management practices
- Sentinel-2 contribution

Methodological contributions

- Model grassland distribution
- Process grassland supervised classification at the parcel scale
- Robust to
 - the dimension of data (n_i pixels, d temporal variables with $n_i \approx d$),
 - the total number of grasslands pixels that might be large.

Mailys Lopes

High Dimensional Divergence for measuring grassland similarity	

Context

High Dimensional Divergence for measuring grassland similarity

Experimental results

Conclusion

Mailys Lopes

	High Dimensional Divergence for measuring grassland similarity		
	00000		
Statistical modelling of grasslands			

For each grassland g_i : each pixel $\mathbf{x}_{ik} \sim \mathcal{N}(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$

Dynafor, University of Toulouse, France

	High Dimensional Divergence for measuring grassland similarity		
	0000		

Measuring similarity between g_i and $g_j \Rightarrow$ measuring similarity betwee $\mathcal{N}(\mu_i, \mathbf{\Sigma}_i)$ and $\mathcal{N}(\mu_j, \mathbf{\Sigma}_j)$

Symmetrized Kullback-Leibler divergence:

$$KLD(g_i, g_j) = \frac{1}{2} \left[\operatorname{Tr} \left[\mathbf{\Sigma}_i^{-1} \mathbf{\Sigma}_j + \mathbf{\Sigma}_j^{-1} \mathbf{\Sigma}_i \right] + (\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)^\top \left(\mathbf{\Sigma}_i^{-1} + \mathbf{\Sigma}_j^{-1} \right) (\boldsymbol{\mu}_i - \boldsymbol{\mu}_j) \right] - d$$

Mailys Lopes

	High Dimensional Divergence for measuring grassland similarity		
	00000		
Measuring similarity between two grasslands			

The number of pixels in a grassland is usually lower than the number of parameters to estimate!

Figure : Histogram of grassland size in number of pixels n_i . Red line: number of parameters to estimate for each grassland for a multivariate Gaussian model. It is derived from the number of variables using the formula d(d+3)/2 = 170 for d = 17.

High Dimensional Divergence for measuring grassland similarity	
000000	

High Dimensional Discriminant Analysis¹ modelling is used: it assumes that the last eigenvalues of the covariance matrix are equal:

- *p_i* is the number of non-equal eigenvalues,
- λ_i is the multiple eigenvalue corresponding to the noise term (last and equal eigenvalues),

•
$$\lambda_{ij} \geq \lambda_i$$
, for $j = 1, ..., p_i$

Mailys Lopes

¹C. Bouveyron, S. Girard and C. Schmid, "High-dimensional discriminant analysis", Communications in Statistics - Theory and Methods, vol. 36, no. 14, pp. 2607–2623, 2007

High Dimensional Divergence for measuring grassland similarity	
000000	

High Dimensional Discriminant Analysis¹ modelling is used: it assumes that the last eigenvalues of the covariance matrix are equal:

$$\boldsymbol{\Sigma}_i = \mathbf{Q}_i \mathbf{\Lambda}_i \mathbf{Q}_i^\top + \lambda_i \mathbf{I}_d$$

■ **I**_d is the identity matrix of size d, ■ **Q**_i = [**q**_{i1},...,**q**_{ip_i}], ■ **Λ**_i = diag[$\lambda_{i1} - \lambda_i, ..., \lambda_{ip_i} - \lambda_i$].

Following this model, Σ_i^{-1} can be computed explicitly:

$$\mathbf{\Sigma}_i^{-1} = -\mathbf{Q}_i \mathbf{V}_i \mathbf{Q}_i^\top + \lambda_i^{-1} \mathbf{I}_d$$

with $\mathbf{V}_i = \operatorname{diag}\left[\frac{1}{\lambda_i} - \frac{1}{\lambda_{i1}}, \dots, \frac{1}{\lambda_i} - \frac{1}{\lambda_{ip_i}}\right]$

 $^1C.$ Bouveyron, S. Girard and C. Schmid, "High-dimensional discriminant analysis", Communications in Statistics - Theory and Methods, vol. 36, no. 14, pp. 2607–2623, 2007

Dynafor, University of Toulouse, France

Mailys Lopes

	High Dimensional Divergence for measuring grassland similarity	
	000000	
High Dimensional Symm	etrized KLD	

To compute HDKLD, only the p_i first eigenvalues/eigenvectors are required:

- the number of parameters to estimate is reduced,
- the unstable estimation of the eigenvectors associated to small eigenvalues is avoided.

$$\begin{split} HDKLD(\mathbf{g}_{i},\mathbf{g}_{j}) &= \frac{1}{2} \bigg[- \| \mathbf{\Lambda}_{j}^{\frac{1}{2}} \mathbf{Q}_{j}^{\top} \mathbf{Q}_{i} \mathbf{V}_{i}^{\frac{1}{2}} \|_{F}^{2} - \| \mathbf{\Lambda}_{i}^{\frac{1}{2}} \mathbf{Q}_{i}^{\top} \mathbf{Q}_{j} \mathbf{V}_{j}^{\frac{1}{2}} \|_{F}^{2} \\ &+ \lambda_{i}^{-1} \operatorname{Tr} \left[\mathbf{\Lambda}_{j} \right] - \lambda_{j} \operatorname{Tr} \left[\mathbf{V}_{i} \right] + \lambda_{j}^{-1} \operatorname{Tr} \left[\mathbf{\Lambda}_{i} \right] - \lambda_{i} \operatorname{Tr} \left[\mathbf{V}_{j} \right] \\ &- \| \mathbf{V}_{i}^{\frac{1}{2}} \mathbf{Q}_{i}^{\top} (\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j}) \|^{2} - \| \mathbf{V}_{j}^{\frac{1}{2}} \mathbf{Q}_{j}^{\top} (\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j}) \|^{2} \\ &+ \frac{\lambda_{i} + \lambda_{j}}{\lambda_{i} \lambda_{j}} \| (\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j}) \|^{2} + \frac{\lambda_{i}^{2} + \lambda_{j}^{2}}{\lambda_{i} \lambda_{j}} d \bigg] - d \end{split}$$

where $||L||_F^2 = \text{Tr}(L^{\top}L)$ is the Frobenius norm.

Dynafor, University of Toulouse, France

High Dimensional Divergence for measuring grassland similarity	
000000	

HDKLD is used to build a positive definite kernel function. This kernel function can be used in any kernel method, such as SVM.

•
$$K(g_i, g_j) = \exp\left[-\frac{(HD)KLD(g_i, g_j)^2}{\sigma}\right]$$
 with $\sigma \in \mathbb{R}^+_*$

Mailys Lopes

High Dimensional Divergence for measuring grassland similarity	Experimental results	

Context

High Dimensional Divergence for measuring grassland similarity

Experimental results

Conclusion

Mailys Lopes

High Dimensional Divergence for measuring grassland similarity	Experimental results	
	00000	

Study site

Field data 52 parcels with 3 management practices (field survey, 2015):

	High Dimensional Divergence for measuring grassland similarity	Experimental results	
		0000	
Classification methods			

Comparison with other methods:

Method	p-SVM	$\mu extsf{-SVM}$	KLD-SVM	HDKLD-SVM
Scale	Pixel	Object	Object	Object
Expl. variable	x _{ik}	$\boldsymbol{\mu}_i$	$\mathcal{N}(oldsymbol{\mu}_i, oldsymbol{\Sigma}_i)$	$\mathcal{N}(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$
Kernel	RBF	RBF	$K(g_i, g_j)$	$K(g_i, g_j)$
Nb of samples	8741	52	52	52

+ majority voting rule

Optimal hyperparameters have been optimized by cross-validation.

Mailys Lopes

	Experimental results	
	00000	

Leave-One-Out Cross-Validation for error estimation.

_				
		_		

Dynafor, University of Toulouse, France

	Experimental results	
	00000	

HDKLD outperforms KLD, but the results are not significantly different than the other methods.

Classification accuracy

	Р	-SV№	1	μ	-SV№	1		KL	D-SV	M	HDK	LD-S	VМ
		REF			REF				REF			REF	
Δ	32	4	2	31	6	3	1٢	32	8	8	33	4	4
Ш	1	4	1	1	0	0		1	0	0	0	3	0
Ы	1	0	7	2	2	7		1	0	2	1	1	6
OA		0.83			0.73	3			0.66	5		0.81	
κ		0.64			0.41	L			0.09)		0.57	7

Test of significance of observed differences

Z	p-SVM	μ -SVM	KLD-SVM	HDKLD-SVM
p-SVM	-	1.47	3.67	0.43
μ -SVM	1.47	-	2.04	1.01
KLD-SVM	3.67	2.04	-	3.11
HDKLD-SVM	0.43	1.01	3.11	-

$$Z = rac{|\hat{\kappa}_m - \hat{\kappa}_n|}{\sqrt{ extsf{var}(\hat{\kappa}_m) + extsf{var}(\hat{\kappa}_n)}}^st$$

(*from Congalton and Green, Assessing the Accuracy of Remotely Sensed Data, Principles and Practices, 2009)

High Dimensional Divergence for measuring grassland similarity	Experimental results	
	00000	

The proposed model

enables a proper grassland modelling at the parcel scale,

reduces the number of elements to be processed by SVM. For HDKLD-SVM: G = 52 grasslands processed For P-SVM: N = 8741 pixels processed

High Dimensional Divergence for measuring grassland similarity	Conclusion

Context

High Dimensional Divergence for measuring grassland similarity

Experimental results

Conclusion

Mailys Lopes

- Gaussian modelling seems accurate to model grassland pixels distribution.
- HDKLD is efficient for measuring grassland proximity and robust to the dimension of data.
- Best results are not significantly different.
- HDKLD is better than KLD.

		Conclusion
Prospects		

- The method will be tested on a larger dataset.
- The method will be further extended to **multispectral data**.
- The method will be used for **unsupervised classification**.

Thank you for your attention.

Dynafor, University of Toulouse, France

Estimation of HDKLD parameters:

$$\begin{split} HDKLD(\mathbf{g}_{i},\mathbf{g}_{j}) &= \frac{1}{2} \bigg[- \|\mathbf{\Lambda}_{j}^{\frac{1}{2}} \mathbf{Q}_{j}^{\top} \mathbf{Q}_{i} \mathbf{V}_{i}^{\frac{1}{2}} \|_{F}^{2} - \|\mathbf{\Lambda}_{i}^{\frac{1}{2}} \mathbf{Q}_{i}^{\top} \mathbf{Q}_{j} \mathbf{V}_{j}^{\frac{1}{2}} \|_{F}^{2} \\ &+ \lambda_{i}^{-1} \operatorname{Tr} \big[\mathbf{\Lambda}_{j} \big] - \lambda_{j} \operatorname{Tr} \big[\mathbf{V}_{i} \big] + \lambda_{j}^{-1} \operatorname{Tr} \big[\mathbf{\Lambda}_{i} \big] - \lambda_{i} \operatorname{Tr} \big[\mathbf{V}_{j} \big] \\ &- \|\mathbf{V}_{i}^{\frac{1}{2}} \mathbf{Q}_{i}^{\top} (\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j}) \|^{2} - \|\mathbf{V}_{j}^{\frac{1}{2}} \mathbf{Q}_{j}^{\top} (\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j}) \|^{2} \\ &+ \frac{\lambda_{i} + \lambda_{j}}{\lambda_{i} \lambda_{j}} \| (\boldsymbol{\mu}_{i} - \boldsymbol{\mu}_{j}) \|^{2} + \frac{\lambda_{i}^{2} + \lambda_{j}^{2}}{\lambda_{i} \lambda_{j}} d \bigg] - d \end{split}$$

- $\hat{\lambda}_{ij}$ and $\hat{\boldsymbol{q}}_{ij}$ are the first eigenvalues/eigenvectors of $\hat{\boldsymbol{\Sigma}}_i$, $j \in \{1, \dots, p_i\}$,
- p̂_i corresponds to the number of eigenvalues needed to reach a given percentage of variance t, ∑_{j=1} λ_{ij} λ_{ij} ≥ t, t being a user defined parameter,
 λ_i = Tr(Ê_i)-∑_{j≤p̂i} λ_{ij}
 .

Mailvs Lopes

Dynafor, University of Toulouse, France

22 of 22

Optimal parameters have been optimized during cross-validation given this search grid:

Parameter	p-SVM	μ-SVM	KLD-SVM	HDKLD-SVM
σ	$\{2^{-5}, 2^{-4}\}$	$^{4},\ldots,2^{5}\}$	$\{2^8, 2^9\}$	$^{9},\ldots,2^{12}\}$
C			$\{1, 10, 100\}$	
t			{0.80, 0.85,	0.90, 0.95, 0.99}

Bhattacharyya distance:

$$D_{\mathcal{B}}(g_i, g_j) = \frac{1}{8} (\mu_i - \mu_j)^\top \boldsymbol{\Sigma}^{-1} (\mu_i - \mu_j) + \frac{1}{2} ln \Big(\frac{det(\boldsymbol{\Sigma})}{\sqrt{det(\boldsymbol{\Sigma}_i)det(\boldsymbol{\Sigma}_j)}} \Big)$$

with

$$\mathbf{\Sigma} = \frac{\mathbf{\Sigma}_i + \mathbf{\Sigma}_j}{2}$$

Mailys Lopes

Dynafor, University of Toulouse, France