# Estimation of risk measures for extreme pluviometrical measurements

by

## Jonathan EL METHNI

in collaboration with

#### Laurent GARDES & Stéphane GIRARD

Workshop "Extreme value modeling and water resources" CNRS center in Aussois – June 2016









<ロト (四) (三) (三) (三) (三)

## Outline

## Introduction

- Extreme Value Theory
- Risk Measures

2 Framework, estimators and asymptotic results

Application to an hydrological data set

Conclusions and perspectives

## Return level

• The rainfall is modeled by a random variable Y with survival function

$$\overline{F}(y) = 1 - F(y) = \mathbb{P}(Y \ge y)$$

• We have an ordered sample of annual rainfall

$$Y_{1,n} \leq \cdots \leq Y_{n,n}.$$

• We want to estimate the level of rain *H* which is exceeded on average once in *T* years *i.e.* we want to estimate *H* such that

$$1/T = \mathbb{P}(Y \ge H) = \overline{F}(H)$$

i.e. we want to estimate

$$H=\overline{F}^{-1}(1/T)$$

- *H* is the return level corresponding to a return period *T*.
- It is the standard quantity of interest in environmental studies.

## Return level and quantile

The quantile of order  $\alpha \in ]0,1[$  of the survival function is defined by

 $q(\alpha) = \overline{F}^{-1}(\alpha).$ 

 $\implies$  The return level  $H = \overline{F}^{-1}(1/T)$  is by consequence a quantile of order  $\alpha = 1/T$ .

• What happens if the return period T is greater than the observed period ? In other words what happens if

$$T > n \iff \alpha = 1/T < 1/n \underset{n \to \infty}{\longrightarrow} 0$$
 ?

We want to estimate extreme quantiles  $q(\alpha_n)$  of order  $\alpha_n$  defined by

$$q(\alpha_n) = \overline{F}^{-1}(\alpha_n)$$
 with  $\alpha_n \to 0$  when  $n \to \infty$ 

• A return level with a return period greater than the observed period is an extreme quantile.



## What happens if $q(\alpha_n) > Y_{n,n}$ ?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

2

We can prove that

$$\mathbb{P}(q(\alpha_n) > Y_{n,n}) = \exp(-n\alpha_n(1+o(1)))$$

• First case :

If 
$$n\alpha_n \to \infty$$
 then  $\mathbb{P}(q(\alpha_n) > Y_{n,n}) \to 0$ .

A natural estimator is the order statistic  $Y_{n-\lfloor n\alpha_n \rfloor+1,n}$  (where  $\lfloor . \rfloor$  is the floor function).

• Second case :

If 
$$n\alpha_n \to 0$$
 then  $\mathbb{P}(q(\alpha_n) > Y_{n,n}) \to 1$ .

In this case, we can not estimate  $q(\alpha_n)$  by simply inverting the empirical cumulative distribution function :

$$\widehat{F}_n(y) = rac{1}{n}\sum_{i=1}^n \mathbb{I}\{Y_i \leq y\}$$
 because  $\widehat{F}_n(y) = 1$  for  $y \geq Y_{n,n}.$ 

The behavior of  $Y_{n,n}$  is caracterised by its cumulative distribution function  $F_{Y_{n,n}}(y) = F^n(y)$  which has a degenerate distribution.

#### Theorem

Let  $(Y_n)_{n\geq 1}$  be a sequence of independent and identically distributed random variables with cumulative distribution function F. If there exist two normalizing sequences  $(a_n)_{n\geq 1} > 0$  and  $(b_n)_{n\geq 1} \in \mathbb{R}$  and a non degenerate distribution  $\mathcal{H}_{\gamma}$  such that

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{Y_{n,n}-b_n}{a_n}\leq y\right)=\lim_{n\to\infty}F^n(a_ny+b_n)=\mathcal{H}_{\gamma}(y),$$

then we have

$$\mathcal{H}_{\gamma}(y) = \exp\left(-\left(1+\gamma y
ight)_{+}^{-1/\gamma}
ight),$$

where  $\gamma \in \mathbb{R}$  and  $z_+ = \max(0, z)$ .

- $\mathcal{H}_{\gamma}$  is called the cumulative distribution function of extreme value distribution.
- $a_n$  and  $b_n$  are normalizing sequences.
- If F verifies the Fisher-Tippett-Gnedenko theorem we say that F belongs to the domain of attraction of  $\mathcal{H}_{\gamma}$ .
- $\bullet\,$  This distribution depends on the unique shape parameter  $\gamma$  called extreme value index or tail index.

## Three domains of attraction

According to the sign of  $\gamma$ , we distinguish between three domains of attraction :

- if  $\gamma < 0$ , we say that F belongs to the domain of attraction of Weibull. It containts distributions with survival function without tail distribution, *i.e.* short-tailed distributions.
- if  $\gamma = 0$ , we say that F belongs to the domain of attraction of Gumbel. It containts distributions with survival function exponentially decreasing, *i.e.* light-tailed distributions.
- if  $\gamma > 0$ , we say that F belongs to the domain of attraction of Fréchet. It containts distributions with survival function polynomially decreasing, *i.e.* heavy-tailed distributions.

| Fréchet ( $\gamma > 0$ ) | Gumbel ( $\gamma = 0$ ) | Weibull ( $\gamma < 0$ ) |
|--------------------------|-------------------------|--------------------------|
| Pareto                   | Normale                 | Uniforme                 |
| Student                  | Exponentielle           | Beta                     |
| Burr                     | Log-normale             | ReverseBurr              |
| Chi-deux                 | Gamma                   |                          |
| Fréchet                  | Weibull                 |                          |
| Log-gamma                | Logistique              |                          |
| Log-logistique           | Gumbell                 |                          |
| Cauchy                   |                         |                          |

All distributions belonging to the domain of attraction of Fréchet can be rewritten

 $\overline{F}(y) = y^{-1/\gamma} \ell(y)$  with  $\gamma > 0$ ,

and  $\ell$  is a slowly varying function at infinity *i.e.*  $\forall \lambda \geq 1$ ,

$$\lim_{y\to\infty}\frac{\ell(\lambda y)}{\ell(y)}\to 1.$$

• The parameter  $\gamma$  controls the behaviour of the tail of the survival function and by consequence the behaviour of the extreme values.

In numerous applications the variable of interest is recorded simultaneously with some covariate.

## The Cévennes-Vivarais region



Horizontally we have the longitude (in km), verticaly the latitude (in km) and in the colour scale the altitude (in m). Some stations of interest (white rombus).

## Description of the real data set



- Data set provided by Météo-France.
- Y : daily rainfall measured in mm.
- X = {longitude, lattitude, altitude}.
- 1958  $\implies$  2000 =43 years of data.
- 523 stations denoted  $\{x_t; t = 1, ..., 523\}$ .

• Observations = 5 513 734.

 $Aim \implies$  to obtain maps of estimated extreme risk measures in all point of the region.

• The Value-at-Risk of level  $\alpha \in (0,1)$  denoted by  $VaR(\alpha)$  introduced in 1993 is defined by

 $\operatorname{VaR}(\alpha) := \overline{F}^{-1}(\alpha).$ 



• The VaR( $\alpha$ ) is the quantile of level  $\alpha$  of the survival function of the *r.v.* Y.

• Let us consider  $Y_1$  and  $Y_2$  two loss *r.v.* with survival function associated  $\overline{F}_1$  and  $\overline{F}_2$ .



• The VaR( $\alpha$ ) is different according to the survival function  $\overline{F}_1$  or  $\overline{F}_2$ .

## Defaults of the Value-at-Risk

• Let us consider  $Y_1$  and  $Y_2$  two loss r.v. with survival function associated  $\overline{F}_1$  and  $\overline{F}_2$ .



 In particular, r.v. with light tail probabilities and with heavy tail probabilities (Embrechts et al. 1997) may have the same VaR(α). This point is one main criticism against VaR as a risk measure.

э

## The Conditional Tail Expectation

• The Conditional Tail Expectation of level  $\alpha \in (0, 1)$  denoted CTE( $\alpha$ ) (see Embrechts *et al.* [1997]) is defined by



The CTE(α), takes into account the whole information contained in the upper part
of the tail distribution and gives informations on the distribution of Y given that
Y > VaR(α) and contrary to the VaR(α), on the heaviness of the tail distribution.

## The Conditional Tail Expectation

• The Conditional Tail Expectation of level  $\alpha \in (0, 1)$  denoted CTE( $\alpha$ ) (see Embrechts *et al.* [1997]) is defined by



The CTE(α), takes into account the whole information contained in the upper part
of the tail distribution and gives informations on the distribution of Y given that
Y > VaR(α) and contrary to the VaR(α), on the heaviness of the tail distribution.

 The Conditional-Value-at-Risk of level α ∈ (0, 1) denoted CVaR<sub>λ</sub>(α) and introduced by Rockafellar and Uryasev [2000] is defined by

 $\operatorname{CVaR}_{\lambda}(\alpha) := \lambda \operatorname{VaR}(\alpha) + (1 - \lambda) \operatorname{CTE}(\alpha) \quad \text{with} \quad 0 \leq \lambda \leq 1.$ 



1 E 1

-

• We can remark that  $CVaR_1(\alpha) = VaR(\alpha)$  and  $CVaR_0(\alpha) = CTE(\alpha)$ .

## The Stop-loss Premium reinsurance

• The risk measure Stop-loss Premium reinsurance with a retention level equals to  $VaR(\alpha)$  (see Cai and Tan [2007]) is defined by

 $\operatorname{SP}(\alpha) := \mathbb{E}((Y - \operatorname{VaR}(\alpha))_+) = \alpha (\operatorname{CTE}(\alpha) - \operatorname{VaR}(\alpha)).$ 



• This risk measure thus permits to emphasize the dangerous cases.

## Outline

#### Introduction

- Extreme Value Theory
- Risk Measures

#### 2 Framework, estimators and asymptotic results

3 Application to an hydrological data set

Onclusions and perspectives

## Framework : extreme losses and regression case

Our contributions consist in adding two difficulties in the framework of the estimation of risk measures.

- **(**) We add the presence of a random covariate  $X \in \mathbb{R}^{p}$ .
- <sup>2</sup> We are interested in the estimation of risk measures in the case of extremes losses.
- ⇒ To this end, we replace the fixed order  $\alpha \in (0,1)$  by a sequence  $\alpha_n \to 0$  as the sample size  $n \to \infty$ .

Denoting by  $\overline{F}(.|x)$  the conditional survival function of Y given that X = x, we define the Regression Value-at Risk by

$$\operatorname{RVaR}(\alpha_n|x) := \overline{F}^{-1}(\alpha_n|x),$$

and the Regression Conditional Tail Expectation by

 $\operatorname{RCTE}(\alpha_n|x) := \mathbb{E}(Y|Y > \operatorname{RVaR}(\alpha_n|x), X = x),$ 

## Inference

 $\implies$  All the risk measures depend on the RVaR and on the RCTE.

$$\begin{aligned} \operatorname{RCVaR}_{\lambda}(\alpha_{n}|x) &= \lambda \operatorname{RVaR}(\alpha_{n}|x) + (1-\lambda)\operatorname{RCTE}(\alpha_{n}|x), \\ \operatorname{RSP}(\alpha_{n}|x) &= \alpha_{n}(\operatorname{RCTE}(\alpha_{n}|x) - \operatorname{RVaR}(\alpha_{n}|x)). \end{aligned}$$

 $\implies$  We want to estimate all these risk measures.

We define the conditional moment of order  $a \ge 0$  of Y given that X = x by

$$\varphi_a(y|x) = \mathbb{E}\left(Y^a\mathbb{I}\{Y > y\}|X = x\right),$$

where  $\mathbb{I}\{.\}$  is the indicator function.

Since  $\varphi_0(y|x) = \overline{F}(y|x)$ , it follows

$$\begin{aligned} \operatorname{RVaR}(\alpha_n | x) &= \varphi_0^{-1}(\alpha_n | x), \\ \operatorname{RCTE}(\alpha_n | x) &= \frac{1}{\alpha_n} \varphi_1(\varphi_0^{-1}(\alpha_n | x) | x). \end{aligned}$$

## Estimator of $\varphi_a(.|x)$ :

To estimate the moment of order  $a \ge 0$  of Y given that X = x, we propose to use a classical kernel estimator defined for  $(x, y) \in \mathbb{R}^{p} \times \mathbb{R}$  by

$$\widehat{\varphi}_{a,n}(y|x) = \sum_{i=1}^{n} K\left(\frac{x-X_i}{h_n}\right) Y_i^a \mathbb{I}\{Y_i > y\} \bigg/ \sum_{i=1}^{n} K\left(\frac{x-X_i}{h_n}\right).$$

- The fonction K is called kernel. It is a bounded density on ℝ<sup>p</sup>, with support S included in the unit ball of ℝ<sup>p</sup>.
- $(h_n)$  is a non-random sequence such that  $h_n \to 0$  when  $n \to \infty$  called the window-width.

## Estimator of $\varphi_a^{-1}(.|x)$ :

Since  $\hat{\varphi}_{a,n}(.|x)$  is a non-increasing function, we can define an estimator of  $\varphi_a^{-1}(.|x)$  by

 $\hat{\varphi}_{a,n}^{-1}(\alpha|x)$ 

The Regression Value-At-Risk of level  $\alpha_n$  is thus estimated by

 $\widehat{\mathrm{RVaR}}_n(\alpha_n|x) = \widehat{\varphi}_{0,n}^{-1}(\alpha_n|x),$ 

and the Regression Conditional Tail Expectation is estimated by :

$$\widehat{\operatorname{RCTE}}_n(\alpha_n|x) = \frac{1}{\alpha_n}\widehat{\varphi}_{1,n}\left(\widehat{\varphi}_{0,n}^{-1}(\alpha_n|x)|x\right)$$

 $\implies$  We thus can now estimate all the above mentioned risk measures.

To do it, we need the asymptotic joint distribution of

$$\left\{\widehat{\operatorname{RCTE}}_n(\alpha_n|x), \widehat{\operatorname{RVaR}}_n(\alpha_n|x)\right\}$$

## Heavy-tailed distributions in the presence of a covariate

(F) We assume that the conditional survival distribution function of Y given X = x is heavy-tailed and admits a probability density function.

This is equivalent to assume that

 $\forall y > 0$ , we have  $\overline{F}(y|x) = y^{-1/\gamma(x)} \ell(y|x)$ 

where in this context,

- γ(.) is an unknown and positive function of the covariate x and will be called conditional tail index since it tunes the tail heaviness of the conditional distribution of Y given X = x.
- $\ell(.|x)$  is a slowly varying function at infinity. We have (for x fixed), for all  $\lambda > 0$ ,

$$\lim_{y\to\infty}\frac{\ell(\lambda y|x)}{\ell(y|x)}=1.$$

This hypothesis amounts to assuming that the conditional distribution of Y given X = x is heavy-tailed.

## Asymptotic joint distribution of our estimators

#### Theorem 1

Suppose (F) hold and for all  $x \in \mathbb{R}^p$  such that g(x) > 0 and  $0 < \gamma(x) < 1/2$  we have a sequence  $(\alpha_n)_{n \ge 1}$  such that  $\alpha_n \to 0$  and  $nh_n^p \alpha_n \to \infty$  as  $n \to \infty$ , then, the random vector

$$\sqrt{nh_n^{\rho}\alpha_n}\left\{\left(\frac{\widehat{\operatorname{RCTE}}_n(\alpha_n|x)}{\operatorname{RCTE}(\alpha_n|x)}-1\right)_{j\in\{1,\ldots,J\}},\left(\frac{\widehat{\operatorname{RVaR}}_n(\alpha_n|x)}{\operatorname{RVaR}(\alpha_n|x)}-1\right)\right\}$$

is asymptotically Gaussian, centred, with a covariance matrix

$$\Sigma(x) = \gamma^2(x) rac{\|\mathcal{K}\|_2^2}{g(x)} egin{pmatrix} rac{2(1-\gamma(x))}{1-2\gamma(x)} & 1 \ 1 & 1 \end{pmatrix},$$

- $\Sigma(x)$  is proportional to  $\gamma^2(x) \Longrightarrow$  the higher the  $\gamma(x)$  (*i.e.* the heavier is the tail) the more the variance of our estimators increases.
- The density g(x) of the covariate is part of the denominator of the covariance matrix  $\implies$  the less the point (*i.e.* the smaller is the density) the more the variance of our estimators increases.

## Conditions on the sequences $\alpha_n$ and $h_n$

nh<sup>p</sup><sub>n</sub>α<sub>n</sub> → ∞ : necessary and sufficient condition for the almost sure presence of at least one point in the region B(x, h<sub>n</sub>) × [RVaR(α<sub>n</sub>|x), +∞) of ℝ<sup>p</sup> × ℝ.



- If  $\alpha_n = \alpha$  is fixed we find the classical condition of asymptotic normality :  $nh_n^p \to \infty$ .
- If  $h_n = h$  is fixed we find the classical condition of asymptotic normality :  $n\alpha_n \to \infty$ .

- In Theorem 1, the condition  $nh_n^p \alpha_n \to \infty$  provides a lower bound on the level of the risk measure to estimate.
- This restriction is a consequence of the use of a kernel estimator which cannot extrapolate beyond the maximum observation in the ball  $B(x, h_n)$ .
- In consequence,  $\alpha_n$  must be an order of an extreme quantile within the sample.

Let us consider  $(\alpha_n)_{n\geq 1}$  and  $(\beta_n)_{n\geq 1}$  two positives sequences such that  $\alpha_n \to 0$ ,  $\beta_n \to 0$ and  $0 < \beta_n < \alpha_n$ . A kernel adaptation of Weissman's estimator [1978] is given by

$$\widehat{\operatorname{RCTE}}_n^W(\beta_n|x) = \widehat{\operatorname{RCTE}}_n(\alpha_n|x) \left(\frac{\alpha_n}{\beta_n}\right)^{\hat{\gamma}_n(x)}$$

- In Theorem 1, the condition  $nh_n^p \alpha_n \to \infty$  provides a lower bound on the level of the risk measure to estimate.
- This restriction is a consequence of the use of a kernel estimator which cannot extrapolate beyond the maximum observation in the ball  $B(x, h_n)$ .
- In consequence,  $\alpha_n$  must be an order of an extreme quantile within the sample.

Let us consider  $(\alpha_n)_{n\geq 1}$  and  $(\beta_n)_{n\geq 1}$  two positives sequences such that  $\alpha_n \to 0$ ,  $\beta_n \to 0$ and  $0 < \beta_n < \alpha_n$ . A kernel adaptation of Weissman's estimator [1978] is given by

$$\widehat{\operatorname{RCTE}}_n^W(\beta_n|x) = \widehat{\operatorname{RCTE}}_n(\alpha_n|x) \left(\frac{\alpha_n}{\beta_n}\right)^{\widehat{\gamma}_n(x)}$$

#### where

•  $\widehat{\mathrm{RCTE}}_n(\alpha_n|x)$  is the previous kernel estimator.

- In Theorem 1, the condition  $nh_n^p \alpha_n \to \infty$  provides a lower bound on the level of the risk measure to estimate.
- This restriction is a consequence of the use of a kernel estimator which cannot extrapolate beyond the maximum observation in the ball  $B(x, h_n)$ .
- In consequence,  $\alpha_n$  must be an order of an extreme quantile within the sample.

Let us consider  $(\alpha_n)_{n\geq 1}$  and  $(\beta_n)_{n\geq 1}$  two positives sequences such that  $\alpha_n \to 0$ ,  $\beta_n \to 0$ and  $0 < \beta_n < \alpha_n$ . A kernel adaptation of Weissman's estimator [1978] is given by

$$\widehat{\mathrm{RCTE}}_n^W(\beta_n|x) = \widehat{\mathrm{RCTE}}_n(\alpha_n|x) \left(\frac{\alpha_n}{\beta_n}\right)^{\widehat{\gamma}_n(x)}$$

#### where

- $\widehat{\mathrm{RCTE}}_n(\alpha_n|x)$  is the previous kernel estimator.
- $(\alpha_n/\beta_n)^{\hat{\gamma}_n(x)}$  is the term which allows the extrapolation.

- In Theorem 1, the condition  $nh_n^p \alpha_n \to \infty$  provides a lower bound on the level of the risk measure to estimate.
- This restriction is a consequence of the use of a kernel estimator which cannot extrapolate beyond the maximum observation in the ball  $B(x, h_n)$ .
- In consequence,  $\alpha_n$  must be an order of an extreme quantile within the sample.

Let us consider  $(\alpha_n)_{n\geq 1}$  and  $(\beta_n)_{n\geq 1}$  two positives sequences such that  $\alpha_n \to 0$ ,  $\beta_n \to 0$ and  $0 < \beta_n < \alpha_n$ . A kernel adaptation of Weissman's estimator [1978] is given by

$$\widehat{\mathrm{RCTE}}_n^W(\beta_n|x) = \widehat{\mathrm{RCTE}}_n(\alpha_n|x) \left(\frac{\alpha_n}{\beta_n}\right)^{\widehat{\gamma}_n(x)}$$

#### where

- $\widehat{\mathrm{RCTE}}_n(\alpha_n|x)$  is the previous kernel estimator.
- $(\alpha_n/\beta_n)^{\hat{\gamma}_n(x)}$  is the term which allows the extrapolation.
- $\hat{\gamma}_n(x)$  is an estimator of the conditional tail index.

## Asymptotic normality of $\widehat{\mathrm{RCTE}}_n^W(\beta_n|x)$

## Theorem 2

Suppose the assumptions of Theorem 1 hold. Let us consider  $\hat{\gamma}_n(x)$  an estimator of the tail index such that

$$\sqrt{nh_n^p\alpha_n}(\hat{\gamma}_n(x)-\gamma(x))\stackrel{d}{\rightarrow}\mathcal{N}\left(0,v^2(x)\right),$$

with v(x) > 0. If  $(\beta_n)_{n \ge 1}$  is a positive sequence such that  $\beta_n \to 0$  and  $\beta_n/\alpha_n \to 0$  as  $n \to \infty$ , then for all  $x \in \mathbb{R}^p$ , we have

$$\frac{\sqrt{nh_n^p\alpha_n}}{\log(\alpha_n/\beta_n)}\left(\frac{\widehat{\operatorname{RCTE}}_n^W(\beta_n|x)}{\operatorname{RCTE}(\beta_n|x)}-1\right)\stackrel{d}{\to}\mathcal{N}\left(0,\nu^2(x)\right).$$

- The condition  $\beta_n/\alpha_n \to 0$  allows us to extrapolate and choose a level  $\beta_n$  arbitrarily small.
- Daouia et al. [2011] have established the asymptotic normality of

$$\widehat{\text{RVaR}}_n^W(\beta_n|x) = \widehat{\text{RVaR}}_n(\alpha_n|x) \left(\frac{\alpha_n}{\beta_n}\right)^{\hat{\gamma}_n(x)}$$

## Outline

#### Introduction

- Extreme Value Theory
- Risk Measures

Pramework, estimators and asymptotic results

#### Application to an hydrological data set

Onclusions and perspectives

Y: daily rainfall measured in mm.  $X = \{$ longitude, latitude, altitude $\}$ . 1958  $\Longrightarrow$  2000.



Aim  $\implies$  estimate RVaR( $\beta_n | x$ ) and RCTE( $\beta_n | x$ ) for  $\beta_n = 1/(100 * 365.25)$ .

29 / 40

Y: daily rainfall measured in mm.  $X = \{$ longitude, latitude, altitude $\}$ . 1958  $\Longrightarrow$  2000.



Aim  $\implies$  estimate RVaR( $\beta_n | x$ ) and RCTE( $\beta_n | x$ ) for  $\beta_n = 1/(100 * 365.25)$ .

Y : daily rainfall measured in mm.  $X = \{$ longitude, latitude, altitude $\}$ . 1958  $\Longrightarrow$  2000.



Aim  $\implies$  estimate RVaR( $\beta_n | x$ ) and RCTE( $\beta_n | x$ ) for  $\beta_n = 1/(100 * 365.25)$ .

Our estimators depend on the following two tuning parameters :

- $h_n$  the bandwidth : recurrent issue in non-parametric statistics.
- α<sub>n</sub> number of upper order statistics used : classical issue since it raises a compromise bias/variance in extreme value theory.

A high value of  $\alpha_n \Longrightarrow$  large bias since we move out of the tail distribution. A small value of  $\alpha_n \Longrightarrow$  large variance since we use few observations.

 $\implies$  Procedure to select simultaneously  $(h_n, \alpha_n)$ .

Our procedure is based on the estimation of the function  $\gamma(x)$  since it controls :

- the tail heaviness of the distribution (see assumption (F)),
- and the extrapolation.

The main idea of our procedure is to select the empirical pair  $(h_{emp}, \alpha_{emp}) \in \mathcal{H} \times \mathcal{A}$  for which two different estimations of the tail index  $\gamma(x_t)$  for each station t are closed.

• Hydrologists  $\implies$  important to combine locals and regionals informations.

#### • Without covariate

Let us consider  $(\alpha_n)_{n\geq 1}$  a positive sequence such that  $\alpha_n \to 0$ , the Hill estimator [1975] is defined by :

$$\hat{\gamma}_{n,\alpha_n} = rac{1}{\lfloor n \alpha_n 
floor - 1} \sum_{i=1}^{\lfloor n \alpha_n 
floor - 1} \log \left( Y_{n-i+1,n} 
ight) - \log \left( Y_{n-\lfloor n \alpha_n 
floor + 1,n} 
ight).$$

#### With a covariate

Let us consider  $(\alpha_n)_{n\geq 1}$  a positive sequence such that  $\alpha_n \to 0$ . A kernel version of the Hill estimator (Gardes and Girard [2008]) is given by

$$\hat{\gamma}_{n,\alpha_n}(x) = \sum_{j=1}^{J} (\log(\widehat{\text{RVaR}}_n(\tau_j \alpha_n | x)) - \log(\widehat{\text{RVaR}}_n(\tau_1 \alpha_n | x))) \bigg/ \sum_{j=1}^{J} \log(\tau_1 / \tau_j),$$

where  $J \ge 1$  and  $(\tau_j)_{j\ge 1}$  is a positive and decreasing sequence of weights.

• Double loop on  $\mathcal{H} = \{h_i; i = 1, \dots, M\}$  and on  $\mathcal{A} = \{\alpha_j; j = 1, \dots, R\}$ .

• Loop on all stations 
$$\{x_t; t = 1, ..., 523\}$$
.

• Double loop on  $\mathcal{H} = \{h_i; i = 1, \dots, M\}$  and on  $\mathcal{A} = \{\alpha_j; j = 1, \dots, R\}$ .

• Loop on all stations  $\{x_t; t = 1, \dots, 523\}$ .



- Double loop on  $\mathcal{H} = \{h_i; i = 1, \dots, M\}$  and on  $\mathcal{A} = \{\alpha_j; j = 1, \dots, R\}$ .
- Loop on all stations  $\{x_t; t = 1, ..., 523\}$ .



• Double loop on  $\mathcal{H} = \{h_i; i = 1, \dots, M\}$  and on  $\mathcal{A} = \{\alpha_j; j = 1, \dots, R\}$ .



• Loop on all stations  $\{x_t; t = 1, ..., 523\}$ .

- We estimate γ > 0 using the classical Hill estimator.
- It only depends on  $\alpha_j$ .
- The  $\alpha_j$  are chosen such that we stay in the tail of the distribution  $\max_{j \in \{1,...,R\}} (\alpha_j) < 0.1$

• Double loop on  $\mathcal{H} = \{h_i; i = 1, \dots, M\}$  and on  $\mathcal{A} = \{\alpha_j; j = 1, \dots, R\}$ .



• Loop on all stations  $\{x_t; t = 1, \dots, 523\}$ .

- We estimate γ > 0 using the classical Hill estimator.
- It only depends on  $\alpha_j$ .
- The  $\alpha_j$  are chosen such that we stay in the tail of the distribution  $\max_{j \in \{1,...,R\}} (\alpha_j) < 0.1$

 $\implies$  We obtain  $\hat{\gamma}_{n,t,\alpha_i}$ 





▲□ > ▲圖 > ▲目 > ▲目 > → 目 → ○ < ⊙



- We estimate γ(x) > 0 using the conditional Hill estimator.
- It depends on  $\alpha_j$  and on  $h_i$ .
- The h<sub>i</sub> are chosen such that there is at least one station in B(x<sub>t</sub>, h<sub>i</sub>) \ {x<sub>t</sub>}.



- We estimate γ(x) > 0 using the conditional Hill estimator.
- It depends on  $\alpha_j$  and on  $h_i$ .
- The h<sub>i</sub> are chosen such that there is at least one station in B(x<sub>t</sub>, h<sub>i</sub>) \ {x<sub>t</sub>}.

$$\implies$$
 We obtain  $\hat{\gamma}_{n,h_i,lpha_i}(x_t)$ 



- We estimate γ(x) > 0 using the conditional Hill estimator.
- It depends on  $\alpha_j$  and on  $h_i$ .
- The h<sub>i</sub> are chosen such that there is at least one station in B(x<sub>t</sub>, h<sub>i</sub>) \ {x<sub>t</sub>}.

 $\implies$  We obtain  $\hat{\gamma}_{n,h_i,\alpha_i}(x_t)$ 

 $(h_{emp}, \alpha_{emp}) = \underset{(h_i, \alpha_j) \in \mathcal{H} \times \mathcal{A}}{\arg\min} \operatorname{median} \{ (\hat{\gamma}_{n,t,\alpha_j} - \hat{\gamma}_{n,h_i,\alpha_j}(\mathbf{x}_t))^2, t \in \{1, \dots, 523\} \}.$ 

Y : daily rainfall measured in mm.  $X = \{$ longitude, latitude, altitude $\}$ . 1958  $\Longrightarrow$  2000.



 $\implies$  Results of the procedure :  $(h_{emp}, \alpha_{emp}) = (24, 1/(3 * 365.25)).$ 

34 / 40

Y: daily rainfall measured in mm.  $X = \{$ longitude, latitude, altitude $\}$ . 1958  $\Longrightarrow$  2000.



 $\implies$  Results of the procedure :  $(h_{emp}, \alpha_{emp}) = (24, 1/(3 * 365.25)).$ 

34 / 40

Y : daily rainfall measured in mm.  $X = \{$ longitude, latitude, altitude $\}$ . 1958  $\Longrightarrow$  2000.



 $\implies$  Results of the procedure :  $(h_{emp}, \alpha_{emp}) = (24, 1/(3 * 365.25)).$ 

## Applications to an hydrological data set

Y : daily rainfall measured in mm.  $X = \{$ longitude, latitude, altitude $\}$ . 1958  $\implies$  2000.



 $\implies$  Results of the procedure :  $(h_{emp}, \alpha_{emp}) = (24, 1/(3 * 365.25)).$ 



















## Outline

#### Introduction

- Extreme Value Theory
- Risk Measures

Pramework, estimators and asymptotic results

Application to an hydrological data set

## Conclusions and perspectives

#### Keys points

- Estimation of VaR, CTE, CVaR, and SP in the case of extreme losses for heavy-tailed distributions in the presence of a covariate.
- Extrapolate those risk measures to arbitrary small levels.
- Application to an hydrological data set.

#### Commentaries

- + Maps obtained are coherent according to hydrologists.
- + New tool for the prevention of risk in hydrology.
- + Theoretical properties similar to the univariate case (extreme or not) and with or without a covariate.
- Curse of dimensionality.

#### Perspectives

• Extend our work to all domains of attraction  $\implies \gamma(x) \in \mathbb{R}$ 

This presentation is based on two research articles :

- El Methni, J., Gardes, L. and Girard, S. (2014). Nonparametric estimation of extreme risk measures from conditional heavy-tailed distributions, *Scandinavian Journal of Statistics*, vol. 41 (4), pp. 988–1012.
- El Methni, J., Gardes, L. and Girard, S. (2015). Estimation de mesures de risque pour des pluies extrêmes dans la région Cévennes Vivarais, La Houille Blanche, vol. 4, pp. 46–51

This presentation is based on two research articles :

- El Methni, J., Gardes, L. and Girard, S. (2014). Nonparametric estimation of extreme risk measures from conditional heavy-tailed distributions, *Scandinavian Journal of Statistics*, vol. 41 (4), pp. 988–1012.
- El Methni, J., Gardes, L. and Girard, S. (2015). Estimation de mesures de risque pour des pluies extrêmes dans la région Cévennes Vivarais, *La Houille Blanche*, vol. 4, pp. 46–51

## Thank you for your attention

- Cai, J. and Tan, K. (2007). Optimal retention for a stop-loss reinsurrance under the VaR and CTE risk measures, *Astin Bulletin*, **37**(1), 93–112.
- Daouia, A., Gardes, L., Girard, S. and Lekina, A. (2011). Kernel estimators of extreme level curves, *Test*, 20, 311–333.
  - Embrechts, P., Kluppelberg, C. and Mikosh, T. (1997). Modelling Extremal Events, *Springer editions.*
- Gardes, L. and Girard, S. (2008). A moving window approach for nonparametric estimation of the conditional tail index, *Journal of Multivariate Analysis*, **99**, 2368–2388.
- Hill, B.M. (1975). A simple general approach to inference about the tail of a distribution, *The Annals of Statistics*, **3**, 1163–1174.
- Rockafellar, R.T. and Uryasev, S. (2000). Optimization of conditional value-at-risk. *Journal of Risk*, **2**, 21–42.
- Valdez, E.A. (2005). Tail conditional variance for elliptically contoured distributions, *Belgian Actuarial Bulletin*, **5**, 26–36.
- Weissman, I. (1978). Estimation of parameters and large quantiles based on the *k* largest observations, *Journal of the American Statistical Association*, **73**, 812–815.