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MOTIVATION

Given a response continuous variable Y 2 R and X 2 Rp explanatory variables
we look for a functional relationship between the two:

Y = f(X, ✏), ✏ independent of X

It is reasonable to think that X contains more information that what we need
for our task of predicting Y , in addition when the dimension p is large
regression is a very hard task when we do not have information about f .

Given that a possible solution is to make a strong assumption:

Y = f(�T
1 X,�T

2 X, ...,�T
k X, ✏)

The space S = Span{�1,�2, ...,�k} is called e↵ective dimension reduction
(e.d.r.) space. Only few linear combinations of the predictors, k ⌧ p, are
su�cient to regress Y .
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IDEA OF SLICED INVERSE REGRESSION
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Suppose k=1 for simplicity: Y = f(�TX, ✏)

We want to find the direction � that best explains Y.

In other words if Y is fixed then �TX should not vary. Consequently our goal

is to find a direction � which minimizes the variations of �TX given Y .

To estimate �TX|Y we arrange Y in h slices each with the same number of

samples, our goal is to find a direction � which minimizes the within-slice

variance of �TX under the constraint var(�TX) = 1.

Since

ˆ

⌃ =

ˆB +

ˆW , where

ˆ

⌃, ˆB, ˆW are respectively the sample covariance

matrix, the between-slice covariance matrix and the within-slice covariance

matrix an equivalent approach is to maximize the between-slice variance under

the same constraint.
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SLICED INVERSE REGRESSION

[1]LI, Ker-Chau. Sliced inverse regression for dimension reduction. Journal of the American Statistical Association, 1991, 86.414: 316-327.
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Let us go back to the general case Y = f(�

T
1 X,�

T
2 X, ...,�

T
k X, ✏).

Since f is unknown it is not possible to directly retrieve �1,�2, ...,�k but a

basis of the e.d.r. space S. Sliced Inverse Regression

[1]
solves this problem

under the following so called Linearity Design Condition:

(LDC) 8b 2 Rp E(bTX|�T
1 X,�

T
2 X, ...,�

T
k X) = c0 + c1�

T
1 X + ...+ ck�

T
k X for

some constants c0, ..., ck.

The centered inverse regression curve E(X|Y )� E(X) is then contained in the

linear subspace spanned by ⌃�i,i=1,...,k where ⌃ = Cov(X).

This implies that the � = Cov(E(X|Y )� E(X)) is degenerated in any

direction orthogonal to the directions ⌃�i,i=1,...,k and furthermore that the k

eigenvectors associated with the k largest eigenvalues are the ⌃�i,i=1,...,k.
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SIR IN PRACTICE
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SIR is quite simple to implement:

• Split Y in h slices

• Estimate � using the slices,

ˆ

� is the between-slice covariance matrix

• Compute the eigendecomposition of the matrix

ˆ

⌃

�1
ˆ

�, where

ˆ

⌃ is the

empirical covariance matrix of X

• Select the eigenvectors corresponding to the highest eigenvalues.



SIR LIMITATIONS

[2]BERNARD-MICHEL, Caroline; GARDES, Laurent; GIRARD, Stéphane. Gaussian regularized sliced inverse regression. Statistics and Computing, 
2009, 19.1: 85-98.

[1]LI, Lexin; LI, Hongzhe. Dimension reduction methods for microarrays with application to censored survival data. Bioinformatics, 2004, 20.18: 
3406-3412.

Recently many papers pointed out limitations of SIR since the

eigendecomposition can be challenging when the covariance matrix ⌃ is ill

conditioned. Many solutions have been proposed starting from preprocessing

the data using PCA

[1]
to a more comprehensive approach to regularize SIR

[2]
.

The weakest point of SIR is the (LDC) which cannot be verified in practice

because it depends on the true directions �1, ...,�k. The condition holds in

case of elliptic symmetry and more generally it has been shown

[3]
that if the

dimension p tends to infinity the condition is always approximately verified.
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CLUSTER SIR

[1]KUENTZ, Vanessa; SARACCO, Jérôme. Cluster-based sliced inverse regression. Journal of the Korean Statistical Society, 2010, 39.2: 251-267.

The LDC is verified when X follows an elliptically symmetric distribution
(e.g. multi normality of X).

When X follows a Gaussian mixture model the condition does not globally
hold but it is verified locally (i.e. in each mixture).

Kuentz & Saracco [1] clusterized X to force the condition to hold locally in
each cluster and then combine the result in each cluster to obtain the final
e.d.r. directions

Our work is based on this intuition. We first clusterize the predictor space X
then a greedy merging algorithm is proposed to assign each cluster to its e.d.r
space taking into account the size of the cluster on which SIR is performed.
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SIR - CLUSTER SIR COLLABORATIVE SIR

k = 1

10

SIR - Y = f(�TX)

Cluster SIR- X = X1 [X2 [ .... [Xc,

where c is the number of clusters

Yi = f(�TXi), i = 1, ..., c

The e.d.r. direction and the linking

function do not change depending

on the cluster.
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X = X1 [X2 [ ... [Xc

Yi = fi(�T
i Xi), �i 2 {�1, ...,�D}

The number D (D  c) of e.d.r.
directions is unknown.

The e.d.r. directions and the link

function may change depending

on the cluster.

A merging algorithm is introduced to

infer the number D based on the

collinearity of the vectors �i.

SIR - Y = f(�TX)

Cluster SIR- X = X1 [X2 [ .... [Xc,

where c is the number of clusters

Yi = f(�TXi), i = 1, ..., c

The e.d.r. direction and the linking

function do not change depending

on the cluster.



COLLABORATIVE SIR : MERGING
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The directions �1, ..., �c are obtained applying SIR independently in each

cluster.

A hierarchical structure is built to infer the number D of e.d.r. directions

using a proximity criteria.

The most collinear vector to a set of vectors A = {�1, ..., �c} given the

proximity criterion m(a, b) = cos

2
(a, b) = (a

T
b)

2
is the solution of the

following problem:

�(A) = max

a2Rp

X

�t2A

wtm(�t, a) s.t. kak = 1

= largest eigenvalue of

X

�t2A

wt�t�
T
t

where wt are weights and sum to one.

To build the hierarchy we consider the following iterative algorithm initialized

with the set A = {{�1}, ..., {�c}}:

while card(A) 6= 1

Let a, b 2 A such that �(a [ b) > �(c [ d)8c, d 2 A

A = (A \ {a, b}) [ a [ b

end

at each step the cardinality of the set A decreases merging the most collinear

sets of directions. Therefore it is possible to infer the number D of underlying

e.d.r. spaces analyzing the values of � in the hierarchy.
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REGULARIZATION
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After merging, each cluster is assigned one of the D e.d.r. directions

ˆ

�1, ...,
ˆ

�D

For each Xi, i = 1, ..., c we consider the D e.d.r directions and we analyze the

two-dimensional distributions:

(Yi,
ˆ

�

T
j Xi) 8j = 1, ..., D

Then we select the direction

ˆ

�j⇤ , j
⇤
= min

j=1,...,D
�2,j , where �2,j is the second

eigenvalue of the covariance matrix Cov(Yi,
ˆ

�

T
j Xi).

This step reconsiders the data to select the best direction from the pool of the

D estimated directions



EXPERIMENTAL RESULTS
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[1]CHAVENT, Marie, et al. A sliced inverse regression approach for data stream. Computational Statistics, 2013, 1-24.

We simulated 100 di↵erent datasets following a gaussian mixture model:

• 10 mixture components

• uniform mixing proportions

• 2500 samples

• dimension p = 240

The response variable Y is generated using the hyperbolic sin link function:

Yi = sinh(�T
i Xi) + ✏, ✏ independent of X.

We will show the case where �i 2 {�1,�2} i.e. the number of e.d.r. directions

D = 2

The proximity criteria m(

ˆ�,�) = cos

2
(

ˆ�,�) = (

ˆ�T�)2 is evaluated to assess

the quality of the estimation

[1]
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EXPERIMENTAL RESULTS
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The proximity criteria is computed using the estimation obtained in each

cluster independently, PC, and after collaborative SIR, PCM , for each run of

K-means:

The average PC is 0.4499 with a standard deviation of 0.0690

The average PCM is 0.7939 with a standard deviation of 0.0960
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EXPERIMENTAL RESULTS
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We consider the data example of horse mussels present in cluster SIR. The

observations correspond to n = 192 horse mussels captured in the Malborough

Sounds at the Northeast of New Zealand’s South Island. The response variable

Y is the muscle mass, the edible portion of the mussel, in grams. The

predictor X is of dimension p = 4 and measures numerical characteristics of

the shell: length, width, height, each in mm, and mass in grams.

We repeated the following algorithm 100 times:

(1) Randomly select 80% of training and 20% of test.

(2) Apply SIR, cluster SIR and collaborative SIR on the training.

(3) Regress the functions using the training samples

(4) Compute the Mean Absolute Relative Error (MARE) on the test
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