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The Value-at-Risk

o Let Y € R be a random loss variable. The Value-at-Risk of level a € (0,1) denoted
by VaR(«) is defined by

VaR(a) = F " (a) = inf{y, F(y) < a},
where F* is the generalized inverse of the survival function F(y) = P(Y > y) of Y.
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@ The VaR(«) is the quantile of level « of the survival function of the r.v._ Y.
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Drawbacks of the Value-at-Risk

o Let us consider Y; and Y5 two loss r.v. with associated survival function F; and Fo.

— Random variables with light tail probabilities and with heavy tail probabilities may
have the same VaR(a). This is one of the main criticism against VaR as a risk
measure (Embrechts et al. [1997]).
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The Conditional Tail Expectation

@ The Conditional Tail Expectation of level a € (0, 1) denoted CTE(«) is defined by
CTE(a) := E(Y]Y > VaR(w)).
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— The CTE(«) takes into account the whole information contained in the upper part
of the tail distribution.
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The Conditional Tail Variance

@ The Conditional Tail Variance of level a € (0,1) denoted CTV(«) and introduced
by Valdez [2005] is defined by

CTV(a) := E((Y — CTE(a))’|Y > VaR(a)).
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= The CTV(«) measures the conditional variability of Y given that Y > VaR(«) and
indicates how far away the events deviate from CTE(«).
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The Conditional Tail Moment

@ The Conditional Tail Skewness of level a € (0,1) denoted CTS(«) and introduced
by Hong and Elshahat [2010] is defined by

Y3|Y > VaR(a))
(CTV(a))*/

CTS(a) := E(
The CTS evaluates the asymmetry of the distribution above the VaR.

—> We can unify the definitions of the previous risk measures using the Conditional Tail
Moment introduced by El Methni et al. [2014].

Definition

The Conditional Tail Moment of level « € (0,1) is defined by
CTM,(a) := E(Y®|Y > VaR(a)),

where b > 0 is such that the moment of order b of Y exists.




Rewritten risk measures

All the previous risk measures of level « can be rewritten as

Risk Measure Rewritten Risk Measure

CTE(a) = E(Y]Y > VaR(«a)) CTM;(«)

CTV(a) = E((Y — CTE(a))?|Y > VaR(a)) | CTMa(a) — CTM:(a)

CTS(a) = E(Y?Y > VaR(«))/(CTV(a))*? | CTMs(a)/(CTV())*?

—> All the risk measures depend on the CTM;(«).



Framework : regression case

— Our contributions consist in adding two difficulties in the framework of the
estimation of risk measures.

Q First we add the presence of a random covariate X € R”. J

@ Y is a positive random variable and X € R” a random vector of regressors recorded
simultaneously with Y.

@ In what follows, it is assumed that (X, Y) is a continuous random vector.
@ The probability density function (p.d.f.) of X is denoted by g(-).

@ The conditional p.d.f. of Y given X = x is denoted by f(:|x).
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Regression Value at Risk and Regression Conditional Tail Moment

For any x € R” such that g(x) # 0, the conditional distribution of Y given X = x is
characterized by the conditional survival function

F(l)=P(Y > |X =x)
or, equivalently, by the Regression Value at Risk defined for o € (0,1) by
RVaR(alx) := F (alx) = inf{t, F(t|x) < a}.

The Regression Value at Risk of level « is a generalization to a regression setting of the
Value at Risk.

The Regression Conditional Tail Moment of order b is defined by
RCTM,(alx) := E(Y®|Y > RVaR(alx), X = x),

where b > 0 is such that the moment of order b of Y exists.
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Framework : extreme losses

Q Second we are interested in the estimation of risk measures in the case of extreme
losses.

= To this end, we replace the fixed order a € (0,1) by a sequence o, — 0 as the
sample size n — oco.

RVaR (arn|x) F (oun|x)
RCTMp(an|x) = E(Y®|Y > RVaR(a,|x), X = x)

== All the risk measures depend on the RCTM,(a|x).

RCTE(an|x) = RCTMi(an|x),
RCTV(an|x) = RCTM:(an|x) — ROTM3(aalx),
RCTS(anlx) = RCTMs(an|x)/(RCTV (au|x))*/2.
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Regression Conditional Tail Moment

Starting from n independent copies (X1, Y1), ..., (Xn, Ya) of the random vector (X, Y),
we address here the estimation of the Regression Conditional Tail Moment of level a,
and order b > 0 given by

1
RCTMp(an|x) := —E (Yb]I{Y > RVaR(au|x)}|X = x) 7
where b is such that the moment of order b of Y exits and I{-} is the indicator function.

— We want to estimate all the above mentioned risk measures.

To do it, we need the asymptotic joint distribution of

{(RETMy, w(enlx), j=1,....9) },

with 0 < b1 < ... < by and where J is an integer.



Estimator of the RVaR

The estimator of the Regression Value at Risk of level a,, considered is given by
RVaR(an|x) = inf{t, Fo(t|x) < an}
with

@ The bandwidth (k,) is a non random sequence converging to 0 as n — co.
@ It controls the smoothness of the kernel estimator.

@ For z > 0, we have also introduced the notation KC,(-) = z7PK(-/z) where K(-) is a
density on RP.

@ The estimation of the RVaR(«n|x) has been addressed for instance by Daouia et
al. [2013].
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Estimator of the RCTM and the RVaR

The estimator of the Regression Conditional Tail Moment of level o, and order b is given
by
1300, K, (x = X:) YPI{Y: > RVaRa(an|x)}

RCTM o (ctn|x) =

an iy Ky (x = Xi)
where
RVaR,(an|x) = inf{t, Fo(t|x) < an}
with

Fulylx) = ZZIZI)C;()/;:()E)_H{;; ¥}

@ The bandwidths (h,) and (k,) are non random sequences converging to 0 as n — co.

@ They control the smoothness of the kernel estimators. In what follows, the
dependence on n for these two sequences is omitted.

@ For the sake of simplicity we have chosen the same kernel ().
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Von-Mises condition in the presence of a covariate

To obtain the asymptotic property of the Regression Conditional Tail Moment estimator,
an assumption on the right tail behavior of the conditional distribution of Y given X = x
is required. In the sequel, we assume that,

(F) The function RVaR(:|x) is differentiable and

im RVaR/(toz\x) _ (v
a—0 RVaR/(a|x) ’
locally uniformly in t € (0, 00).

— In other words :

—RVaR/(+|x) is said to be regularly varying at 0 with index —(y(x) + 1)

The condition (F) entails that the conditional distribution of Y given X = x is in the

maximum domain of attraction of the extreme value distribution with extreme value
index y(x).
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Conditional extreme-value index

The unknown function 7(x) is referred as the conditional extreme-value index.

It controls the behaviour of the tail of the survival function and by consequence the
behaviour of the extreme values.

= if 7(x) < 0, F(.|x) belongs to the domain of attraction of Weibull. It contains
distributions with finite right tail, i.e. short-tailed.

= if y(x) = 0, F(.|x) belongs to the domain of attraction of Gumbel. It contains
distributions with survival function exponentially decreasing, i.e. light-tailed.

= if 7(x) > 0, F(.|x) belongs to the domain of attraction of Fréchet. It contains
distributions with survival function polynomially decreasing, i.e. heavy-tailed.

The case v(x) > 0 has already been investigated by El Methni et al. [2014]. J
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First, a Lipschitz condition on the probability density function g of X is required. For all
(x,x") € RP x R?, denoting by d(x, x’) the distance between x and x’, we suppose that

(L) There exists a constant ¢; > 0 such that |g(x) — g(x")| < cgd(x, x').

The next assumption is devoted to the kernel function K(-).

(K) K(:) is a bounded density on R?, with support S included in the unit ball of R”.
Before stating our main result, some further notations are required.

For £ > 0, the largest oscillation at point (x,y) € R x R} associated with the
Regression Conditional Tail Moment of order b € [0,1/v,(x)) is given by

w(x,y,b,& h) :sup{‘M — ll with ’E — 1‘ <¢and X' € B(x,h)}7
wb(z|x") y

where p(-|x) := F(-|x)RCTM,(F(-|x)|x) and B(x, h) denotes the ball centred at x with
radius h.
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Asymptotic normality of m‘n(an\x)

Theorem 1
Suppose (F), (L) and (K) hold. For x € R” such that g(x) > 0, let o, — 0 such that
nkPa, - 00 as n— oo
If there exists & > 0 such that
nkPau, (k V w(x, RVaR(an|x), 0, &, k) — 0,

then

(nkpa;l)l/zf(RVaR(an|X)|X) (mn(anb() = RVaR(Oén|X)) L> N (O’ %) ’

= We thus find back the result established in Daouia et al. [2013] under weaker
assumptions.
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Asymptotic joint distribution of our estimators

Suppose (F), (L) and (K) hold. For x € R” such that g(x) >0 :
o Let0< by <...< by < 1/(274+(x)),
e/=hAkand £=hV k.
o Let o, — 0 such that nlPa, — 0o as n — co.
o If there exists £ > 0 such that

_ = _\2
nl’ o, (Z V max w(x, RVaR(an|x), b, €, Z)) — 0,

then, if
h/k -0 or k/h—0

mb' ,,(Oén|X)
P \1/2 —_—— — —
(ntfan) {( RCTMy, (an|x) 1

is asymptotically Gaussian, centred, with a J X J covariance matrix.

the random vector

je{1,....J}
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Covariance matrix two cases

In what follows, (-)+ (resp. (-)—) denotes the positive (resp. negative) part function.

@ If k/h — 0 then the covariance matrix is given by

IKI3E™ (%)
g(x)

where for (i,j) € {1,...,J}%,

SO (x) = (1 = biys ()1 — b= (x)).

@ If h/k — 0 then the covariance matrix is given by

IEIE= (x)

g(x)
where for (i,j) € {1,...,J}?,
£ = LB (L= b () T
" 1= (bi + bj)v+(x) 1= (bi + bj)v+(x)



Covariance matrix two cases

Recall that
¥ (x)
Wy — (1 b 5 @) — i
L (x) = (1= b ()1 = by (x)) and  X;7(x) 1= (b + 5)7:(0)

@ Note that if v(x) < 0, asymptotic covariance matrices do not depend on
{b1,...,bs} and thus the estimators share the same rate of convergence.

o Conversely, when v(x) > 0, asymptotic variances are increasing functions of the
RCTM order.

@ Moreover, in this case, note that for all i € {1,...,J}

() > =W (x)

— Taking k/h — 0 leads to more efficient estimators than h/k — 0.



Under (F), the Regression Conditional Tail Moment or order b is asymptotically
proportional to the Regression Value at Risk to the power b.

Proposition

Under (F), for all b € [0,1/v+(x)),
RCTMy(a|x) 1

50 [RVaR(a]x)]® 1 byi(x)’

and RCTM,(:|x) is regularly varying with index —by(x).

In particular, the Proposition is an extension to a regression setting of the result
established in Hua and Joe [2011] for the Conditional Tail Expectation (b = 1) in the
framework of heavy-tailded distributions (v = v(x) > 0).



Right endpoint

Let us note y*(x) = RVaR(0|x) = F(0|x) € (0, o0] the endpoint of Y given X = x

Two cases :

Q If the endpoint y*(x) is infinite :

y'(x)=o00 then ~(x)>0

—> We can make risk measure estimation.

= An application in pluviometry has already been done in El Methni et al. [2014].




Right endpoint

@ If the endpoint y*(x)) is finite, the risk measures do not have sense :

y'(x) <oo then ~(x)<0

As a consequence of the Proposition

RCTM,(a|x) = [RVaR(a|x)]°(1 + o(1)) = [y*(x)]® as a — 0.

For all b > 0, a natural estimator of the right endpoint (or frontier) is thus given by
— 1/b
7in(x) i= [RCTMj,n(cn]x)

where a, is a sequence converging to 0 as n — oo.

=—> We can use our Proposition to make frontier estimation.

= We propose an application in nuclear reactor reliability.




Simulation and Procedure

@ The performance of the frontier estimator y, ,(x) is illustrated on simulated data.

A%

® ¥ ,(x) depends on two hyper-parameters h and o :

o The choice of the bandwidth h, which controls the degree of smoothing, is a recurrent
problem in non-parametric statistics.

o Besides, the choice of « is crucial, it is equivalent to the choice of the number of
upper order statistics in the non-conditional extreme-value theory.

@ We propose a data driven procedure to select h and a.

@ The performance of the data-driven selection of the hyper-parameters is compared
to an oracle one. Our procedure yields reasonable results.



Simulation and Procedure

@ We have compared 10 estimators 1 ,, ..., J1io,, deduced from y;, ,(x) with RVaR

and three estimators 91" 9" and §{"™) from Girard and Jacob [2008] and
Girard et al. [2013]

@ It appears that y; , = CTE does not yield very good results but y5 ,,. .., J1o,, all
perform better than RVaR, 9\, 9{°™) and 95™ in all situations.

@ Among them, y7 , yields the best results but the behavior of y;,, y5, and jg , are
very close.

@ As a conclusion it appears on this numerical study that y;, , combined with the
data-driven hyper-parameters selection are efficient frontier estimators for b > 2.

@ Their performance seems to be stable with b > 2 but an automatic selection of b
could be of interest.



Application in nuclear reactors reliability

@ The dataset comes from the US Electric Power Research Institute and consists of
n = 254 toughness results obtained from non-irradiated representative steels.

@ The variable of interest Y is the fracture toughness and the unidimensional covariate
X is the temperature measured in degrees Fahrenheit.

@ As the temperature decreases, the steel fissures more easily.
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Frontier estimation

@ In a worst case scenario, it is important to know the upper limit of fracture
toughness of each material as a function of the temperature, that is y™(x).

@ An accurate knowledge of the change in fracture toughness of the reactor pressure
vessel materials as a function of the temperature is of prime importance in a nuclear
power plant’s lifetime programme.
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Frontier estimation

@ The hyper-parameters associated with y; , are chosen in the sets
H ={17,18,...,120} and A ={0.01,0.011,...,0.1}

@ The selection yields (hgata, taata) = (98,0.085)
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Frontier estimation

@ We compare 7 , to the spline-based estimators CS-B and QS-B recently introduced
in Daouia et al. [2016] for monotone boundaries.

@ The BIC criterion is used to determine the complexity of the spline approximation.
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Frontier estimation

@ We compare y7 , to the spline-based estimators CS-B and QS-B recently introduced
in Daouia et al. [2016] for monotone boundaries.
@ The BIC criterion is used to determine the complexity of the spline approximation.
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@ CS-B and QS-B simply interpolate the boundary points whereas y; , estimates a
heavier tail and thus a higher value for the limit of fracture toughness.

@ Moreover, unlike us, they make different hypothesis on the form of the curve.
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Conclusions

Commentaries

+ New tool for the prevention of risk and frontier estimation.

+ Theoretical properties similar to the univariate case (extreme or not) and with or
without a covariate.

+ Our results are similar to those obtained by Daouia et al. [2013] and El Methni et al.
[2014]. We have filled in the gap between these two works.

+ Capable to estimate risk measures based on conditional moments of the r.v. of losses
given that the losses are greater than RVaR(«) for short, light and heavy-tailed
distributions.

+ Tuning parameter selection procedure to choose (h, a).

Illustration on real data

| \

—> Application in pluviometry.

—> Application in nuclear reactors reliability.

Long-term perspectives

- Curse of dimensionality.




Further readings

This presentation is based on the research article

@ El Methni, J., Gardes, L. and Girard, S. Kernel estimation of extreme regression risk
measures, to appear in Electronic Journal of Statistics, 2018.

On my personal web page you can find a link to the Preprint version.
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