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Introduction

Background:

Recent space missions, such as Copernicus Sentinel-2%, provide high resolution Satellite
Image Time Series (SITS) to study continental surfaces, with a very short revisit period
(5 days for sentinel-2). In order to process such data, statistical models are regularly
used |1, 2|, which usually require a regular temporal sampling. However, for SITS, clouds
and shadows (eg. figure from [3]), as well as the satellite orbite, an irregular temporal
sampling is common.

Contribution:

A new statistical approach using Gaussian processes is proposed to classify irregularly sam-
pled signals without temporal rescaling. Moreover, the model offers a theoretical framework
to impute missing values such as cloudy pixels.

“https://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2

Model Validation (Synthetic data)

Gaussian Processes (GP) model:

Let S = {(yi, Zi)}?zl a set of multidimensional and irregularly sampled N el
signals. A signal Y is modeled as a vector of p independent random T e s
processes 7 — RP, with 7 = [0,7T]. The associated label is modeled - .',"_7.""

by a discrete random variable Z taking its values in {1,...,C}. The
model introduced here is based on two assumptions: 1) The coordinate

Y(t): Amplitude (1 band)
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with hyperparameters 6y .. For example 8, . = {’71?,(;» hp.c, Jg’c} with

Example of two signals (dots) that belongs to two different classes
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There p,, . = B! oy, . is the sampled mean projected on a finite-
dimensional space (Bj is the fixed design matrix, oy . is the unknown

e Missing values
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vector of coordinates). 3J, . is the matrix kernel Kj . evaluations at =
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Imputation on two signals belonging to the same class.
Classification and Imputation of missing values

The assigned class is given by the MAP rule from the posterior probability Future work

. A %y, We are now implementing the model fo assive real data (Sentinel-2).
T, fr (v, Blaw.e, 7 (0,.0)) re now implementing m r massive r (Sentinel-2)

P(Z =cly;) = We are also working on a new model when the bands are correlated.
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When the class is known to be ¢, the missing value at ¢t* is estimated
through the computation of conditional expectation.
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