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Extreme risk measures

Some risk measures

Let Y € R be a random loss variable. The Value-at-Risk of level « € (0,1)
is the a-quantile defined by

VaR(a) :=F (o) = inf{t, F(t) < a},

where F™ (.) is the generalized inverse of the survival function of Y.
The Conditional Tail Expectation of level a € (0,1) is defined by

CTE(a) := E(Y|Y > VaR(a)).

The Conditional-Value-at-Risk of level a € (0, 1) introduced by Rockafellar
et Uryasev [2000] is defined by

CVaRx(a) == AVaR(a) + (1 — \)CTE(a),

with 0 < A < 1.

The Conditional Tail Variance of level a € (0, 1) introduced by Valdez
[2005] is defined by

CTV(a) := E((Y — CTE(a))’|Y > VaR(a)).



Extreme risk measures

A new risk measure : the Conditional Tail Moment

The first goal of this work is to unify the definitions of the previous risk
measures. To this end, The Conditional Tail Moment of level o € (0,1) is
introduced :

CTM,(«a) := E(Y?|Y > VaR(«)),

where a > 0 is such that the moment of order a of Y exists.

All the previous risk measures of level a can be rewritten as

CTE(a) = CTMi(w),
CVaR(a) = AVaR(a)+ (1 — A)CTM;i(w),
CTV(a) = CTMs(a)— CTMi(a).
= All the risk measures depend on the VaR and the CTM,. J
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Extreme losses and regression case

Our second aim is to estimate these risk measures in case of extreme losses and
to the case where a covariate X € R” is recorded simultaneously with Y.

Q The fixed level a € (0,1) is replaced by a sequence a, — 0.

n—oo

Q Denoting by F(.|x) the conditional survival distribution function of Y
given X = x, the Regression Value-at Risk is defined by :

RVaR(au|x) := F (an|x) = inf{t, F(t|x) < an},
and the Regression Conditional Tail Moment of order a is defined by :
RCTM,(an|x) :=E(Y?|Y > RVaR(an|x), X = x),

where a > 0 is such that the moment of order a of Y exists.
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Extreme regression risk measures

This yields the following risk measures :

RCTE(an|x) = RCTM;i(an|x),
RCVaRx(an|x) = ARVaR(an|x) + (1 — A)RCTMi(an|x),
RCTV,(anlx) = RCTMa(an|x) — RCTMZ(au|x).
= All the risk measures depend on the RVaR and the RCTM.,. J

The conditional moment of order a > 0 of Y given X = x is defined by
Pa(ylx) = E(YI{Y > y}X =x),
where I{.} is the indicator function. Since wo(y|x) = F(y|x), it follows

RVaR(an|x) = o (an|x),
1 —
RCTMs(anlx) = —pa(o (anlX)]x).
Goal : estimate p,(.|x) and @5 (.|x). J




Inference

Estimator of ¢a.(.|x) :

We propose to use a classical kernel estimator given by

N ! x — X a . x = X;
Buotyi) = Lok (S2) vrvs 1 ) 3ok (25,
i=1 " i=1 n

o h, is a sequence called the window-width such that h, — 0 as n — oo,

o K is a bounded density on R with support included in the unit ball of RP.

Estimator of ¢ (.|x) :

Since @a,n(.|x) is a non-increasing function, an estimator of ¢, (a|x) can be
defined for o € (0,1) by

Pan(alx) = inf{t, Pan(t|x) < a}.



Heavy-tail assumptions

(F.1) The conditional survival distribution function of Y given X = x is assumed
to be heavy-tailed i.e. for all A > 0,
lim F()\y|x) _ 1Al
y=ee Fylx)

In this context, (.) is a positive function of the covariate x and is referred to
as the conditional tail index since it tunes the tail heaviness of the conditional
distribution of Y given X = x.

Condition (F.1) also implies that for a € [0,1/v(x)), RCTM,(.|x) exists, and
for all y >0,
ROTM, (1/y[x) = y"®L,(y]x),

where for x fixed, £,(.|x) is a slowly-varying function i.e. for all A > 0,

i GOy
5 Loy ]x)
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Heavy-tail assumptions

(F.2) £.(.|x) is normalized for all a € [0,1/7(x)).

In such a case, the Karamata representation of the slowly-varying function can

be written as ,
L) = e ([ =a),
1

where c,(.) is a positive function and e,(y|x) — 0 as y — oo.
(F.3) |ea(.|x)] is continuous and ultimately non-increasing for all a € [0,1/~(x)).



Regularity assumptions

A Lipschitz condition on the probability density function g of X is also
required :

(L) There exists a constant ¢g > 0 such that |g(x) — g(x)| < ¢gd(x, x").

where d(x, x") is the Euclidean distance between x and x’.

Finally, for y > 0 and £ > 0, the largest oscillation of the conditional moment
of order a € [0,1/7(x)) is defined by

wonl, ) = p{'% - 1' (2el1- Oy ey and dxx) < ).
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Main result

Suppose (F.1), (F.2) and (L) hold. Let

o0<a<a< --<ay

o x € R” such that g(x) > 0 and 0 < v(x) < 1/(2ay),

o a, — 0 and nhPa, — oo as n — oo,

o ¢ > 0 such that v/nhPa, (hV wa(RVaR(an|x),£)) — 0,
Then,

RCTMS,, (cwn|x) RVaRa(an|x)
Voo { | =22 1 [t} Sl lia? Y |
nhPa < RCTM,, (an|x) — RVaR(an|x)
J yeees

is asymptotically Gaussian, centered, with covariance matrix
IK37*(x)E(x)/g(x) where

ai

a;aj(2—(aj+3j)v(x)) .

Y (x) = (1—(ai+aj)v(x)) :
aj

ar---ay 1




Estimators and asymptotic result

Conditions on the sequences «, and h,

nhfa, — oo : Necessary and sufficient condition for the almost sure presence of
at least one point in the region B(x, h,) X [RVaR(an|x), +00) of RP x R.

RVaR

VnhPay, (hV wa(RVaR(an|x), €)) — 0 : The biais induced by the smoothing is
negligible compared to the standard-deviation.




Estimators and asymptotic result

Consequences

Suppose the assumptions of Theorem 1 hold. Then, if 0 < v(x) < 1/2,

o RCTEn(an|x) . 2(1 = () (%) K12
nhect, ( RCTE (cvn|x) 1) N (O’ 1-2y(x)  g(x) )

wra, | BCVaRn(onb) 1) o PO +2 = 22— 29(x)) K13
VnhPa, ( RCVaR (|x) 1) N (O’ 1-2y(x) g(x) )

The RCTV(ap|x) estimator involves the computation of a second order
moment, it requires the stronger condition 0 < y(x) < 1/4,

mn(anb() B d K13
Vnhpa"(RCTV(an|x) L) — N (0 Vi :

where

_ 81 = 9())(1 = 29(x)(1 + 29(x) + 39°(x))

Vo9 1= 390)) (1 — ()
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A Weissman type estimator

@ In Theorem 1, the condition nhPa, — oo provides a lower bound on the
level of the risk measure to estimate.

@ This restriction is a consequence of the use of a kernel estimator which
cannot extrapolate beyond the maximum observation in the ball B(x, hj).

@ In consequence, a, must be an order of an extreme quantile within the
sample.

Definition

Let us consider (an)n>1 and (8n)n>1 two positive sequences such that a, — 0,
Bn — 0 and 0 < B, < an. A kernel adaptation of Weissman's estimator [1978]
is given by

— W — s\ 2
RCTM, ,(8alx) = RCTM.,n(cn|x) (?)

extrapolation
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Extrapolation

Theorem 2 :

Suppose the assumptions of Theorem 1 hold together with (F.3). Let 4,(x) be
an estimator of the conditional tail index such that

Ve (3n(x) = 7(x)) £ N (0,v(x))

with v(x) > 0. If, moreover (3,),>1 is a positive sequence such that 8, — 0
and 3,/an, — 0 as n — oo, then

Vi [ RCTMon(Balx)
log(cn/Bn) \ RCTMa(Bn|x)

—1] 3N (o, (av(x))2) .

The condition (3,/an — 0 allows us to extrapolate and choose a level 3,
arbitrarily small.



Estimation of the conditional tail index

o Without covariate : Hill [1975]
Let (kn)n>1 be a sequence of integers such that k, € {1...n}. The Hill
estimator is given by

kn—1
Tnan = 1= D 108 Znittin — 108 Zoiyiin
"=

where Z1, < --- < Z, , are the order statistics associated with i.i.d.
random variables Z1, ..., Z,.

o With a covariate :

A kernel version of the Hill estimator is given by

J
Anyan(X) = Z(Iog mn(qoﬂx) log RVaR (Tran|x)) Z log(11/75),

j=1
where J > 1 and (75);>1 is a decreasing sequence of weights.
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Extrapolation

The asymptotic normality of ., (x) and

— W e a An(x)
RVaR, (f8a|x) = RVaR,(an|x) (ﬁ—"> .

has been established by Daouia et al. [2011] .

—— —w — ——w
As a consequence, replacing RVaR, by RVaR, and RCTM, , by RCTM, ,
provides (asymptotically Gaussian) estimators for all the risk measures

considered in this talk, and for arbitrarily small levels.

In particular, since RCTE(a,|x) = RCTM;(aq|x), we obtain

P P An(x)
RCTE, (Balx) = RCTEn(an|x) (%) .

n
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Daily rainfalls in the Cévennes-Vivarais region
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Application

Estimation of risk measures associated to return periods of 100 years
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Application

A cross validation procedure to choose h, and «, : Step 1

@ Double loop on H = {h;;i=1,...,M} andon A= {aj;j=1,...,R}. J

@ Loop on all raingauge stations {x;;t = 1,..., N}.
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Application

A cross validation procedure to choose h, and «, : Step 1
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@ Loop on all raingauge stations {x;;t = 1,..., N}.
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Application

A cross validation procedure to choose h, and «, : Step 1
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Application

A cross validation procedure to choose h, and «, : Step 1

@ Double loop on H = {h;;i=1,...,M} andon A= {aj;j=1,...,R}. J

@ Loop on all raingauge stations {x;;t = 1,..., N}.
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Application

A cross validation procedure to choose h, and «, : Step 2
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A cross validation procedure to choose h, and «, : Step 2
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A cross validation procedure to choose h, and «, : Step 2
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@ Estimate 7(x) > 0 using the
kernel version of the Hill
estimator.
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A cross validation procedure to choose h, and «, : Step 2
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Application

A cross validation procedure to choose h, and «, : Step 2

2050

@ Estimate 7(x) > 0 using the
kernel version of the Hill
estimator.
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1900

= We obtain 4, s;,a; (xr)

1850
L

1800

(hemp, Ctemp) = argmin median{(’%,t,aj = n,hisaj (Xt))27 te{l,...,N}}.
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Computation of RVaR,, and RC

523 Stations Regular grid : 200x200

i

T

v y

e Two dimensional covariate X =(latitude, longitude).

o Bi-quadratic kernel : K(x) o< (1 — [|x[*)*Iq <1}

e Harmonic sequence of weights : (7j)jeq1,....0p = 1/J.

@ Results of the procedure (hemp, (temp) = (24,1/(3 X 365.25)).



Estimated risk measures for a return period of 3 years

RVaR,(1/(3 x 365.25)|x) RCTE(1/(3 x 365.25)|x)

N
N
N
S



Estimated conditional tail index

Application
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R, (1/(100 x 365.25)|x) : 100-year return level
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