PhD theseshere |
M. Allouche,
"Contributions to generative modeling and dictionary learning: Theory and application", Institut Polytechnique de Paris, décembre 2022
[pdf].
|
A. Constantin,
"Analyse de séries temporelles massives d'images satellitaires: Applications à la cartographie des écosystèmes", Université Grenoble Alpes, décembre 2021
[pdf].
|
M. Lopes,
"Suivi écologique des prairies semi-naturelles : analyse statistique de séries temporelles denses d'images satellite à haute résolution spatiale", Université de Toulouse, novembre 2017
[pdf].
|
S. N. Sylla, "Modélisation et classification de données binaires en grande dimension - Application à l'autopsie verbale", Université Gaston Berger, Sénégal, décembre 2016
[pdf].
|
A. Chiancone, "Réduction de dimension via Sliced Inverse Regression: Idées et nouvelles propositions", Université Grenoble Alpes, octobre 2016
[pdf].
|
G. Mazo,
"Construction et estimation de copules en grande dimension", Université Grenoble 1, novembre 2014
[pdf].
|
C. Bouveyron, "Modélisation
et classification des données de grande dimension. Application à l'analyse d'images", Université Grenoble 1,
septembre 2006 [pdf]. |
Classification of high-dimensional data |
A. Constantin, M. Fauvel & S. Girard,
"Mixture of multivariate Gaussian processes for classification of irregularly sampled satellite image time-series", Statistics and Computing, 32, 79, 2022.
[Associated technical report: pdf]. |
A. Constantin, M. Fauvel & S. Girard,
"Joint supervised classification and reconstruction of irregularly sampled satellite image times series", IEEE Transactions on Geoscience and Remote Sensing, 60, 1--13, 2022.
[Associated technical report: pdf]. |
M. Lopes, M. Fauvel, A. Ouin & S. Girard.
"Spectro-temporal heterogeneity measures from dense high spatial resolution satellite image time series: Application to grassland species diversity estimation", Remote Sensing, 9 (10), 2017.
[Associated technical report: pdf]. |
M. Lopes, M. Fauvel, S. Girard & D. Sheeren.
"Object-based classification from high resolution satellite image time series with Gaussian mean map kernels: Application to grassland management practices", Remote Sensing, 9 (7), 2017.
[Associated technical report: pdf]. |
S. Girard and J. Saracco. "Supervised and unsupervised classification using mixture models" In D. Fraix-Burnet and S. Girard, editors, Statistics for astrophysics, clustering and classification, volume 77, pages 69--90, EDP Sciences, 2016.
[Associated technical report: pdf]. |
S. Sylla, S. Girard, A. Diongue, A. Diallo & C. Sokhna.
A classification method for binary predictors combining
similarity measures and mixture models",
Dependence Modeling, 3, 240--255, 2015.
[Associated technical report: pdf]. |
M. Fauvel, C. Bouveyron and S. Girard, "Parsimonious Gaussian process models for the classification of hyperspectral remote sensing images", IEEE Geoscience and Remote Sensing Letters, 12, 2423--2427, 2015.
[Associated technical report: pdf]. |
C. Bouveyron, M. Fauvel & S. Girard.
"Kernel discriminant analysis and clustering with parsimonious Gaussian process models",
Statistics and Computing, 25, 1143--1162, 2015.
[Associated technical report: pdf].
|
L. Bergé, C. Bouveyron & S. Girard. "HDclassif: An R package for model-based clustering and discriminant analysis of high-dimensional data, Journal of Statistical Software, 46(6), 1--29, 2012.
[Associated technical report: pdf].
|
C. Bouveyron & S. Girard. "Robust supervised classification with mixture models: Learning from data with uncertain labels",
Pattern Recognition, 42(11), 2649--2658, 2009.
[Associated technical report: pdf].
|
| C. Bouveyron & S. Girard. "Classification supervisée et non supervisée des données de grande dimension, La revue Modulad, 40, 81--102, 2009.
|
C. Bouveyron, S. Girard & C. Schmid. "High-dimensional discriminant
Analysis", Communication in Statistics - Theory and Methods,
36(14), 2607--2623, 2007.
[Associated technical report (in french):
ps/pdf]. |
| C. Bouveyron, S. Girard & C. Schmid. "High Dimensional Data Clustering", Computational Statistics and Data Analysis, 52, 502--519, 2007.
[Associated technical report: ps/pdf]. |
| C. Bouveyron, S. Girard & C. Schmid. "Class-specific subspace
discriminant analysis for high-dimensional data", In C. Saunders et
al., editors, Lecture Notes in Computer Science, volume 3940,
p. 139-150. Springer-Verlag, Berlin Heidelberg, 2006. |
| Dimension reduction with nonlinear
Principal Component Analysis |
S. Girard & S. Iovleff. "Auto-associative models, nonlinear Principal component analysis, manifolds and projection pursuit" In A. Gorban et al, editors, Principal Manifolds for Data Visualisation and Dimension Reduction, volume 28, p. 205-222, LNCSE, Springer-Verlag, 2007.
[Associated technical report:
ps/pdf].
|
S. Girard & S. Iovleff. "Auto-Associative Models and Generalized
Principal Component Analysis", Journal of Multivariate Analysis,
93(1):21-39, 2005.
[Associated technical report:
ps/pdf]. |
| S. Girard."A nonlinear PCA based on manifold approximation", Computational Statistics, 15(2):145-167, 2000.
[Associated technical report:
pdf]. |
| B. Chalmond & S. Girard. "Nonlinear modeling of scattered
multivariate data and its application to shape change", IEEE Pattern Analysis
and Machine Intelligence, 21(5):422-432, 1999.
[Associated technical report: pdf]. |
| S. Girard, B. Chalmond & J-M. Dinten. "Position of principal
component analysis among auto-associative composite models", Comptes-Rendus
de l'Académie des Sciences, t. 326, Série I:763-768,
1998. |
| S. Girard, B. Chalmond & J-M. Dinten. "Une ACP non-linéaire
basée sur l'approximation par variétés", Revue
de Statistique Appliquée, XLVI(3):5-19, 1998. |
| S. Girard, B. Chalmond & J-M. Dinten. "Designing non linear models
for flexible curves", Curves and Surfaces with Application in
CAGD, A. Le Méhauté, C. Rabut, and L.L. Schumaker
(eds.), 135-142, 1997. |
See also Applications of statistics.
| Copulas |
J. Arbel, M. Crispino & S. Girard.
"Dependence properties and Bayesian inference for asymmetric multivariate copulas", Journal of Multivariate Analysis, 174, 104530, 2019.
[associated technical report: pdf].
|
S. Girard.
"Transformation of a copula using the associated co-copula",
Dependence Modeling, 6, 298--308, 2018.
[associated technical report: pdf].
|
F. Durante, S. Girard & G. Mazo.
"Marshall-Olkin type copulas generated by a global shock",
Journal of Computational and Applied Mathematics, 296, 638--648, 2016.
[associated technical report: pdf].
|
G. Mazo, S. Girard & F. Forbes.
"A flexible and tractable class of one-factor copulas",
Statistics and Computing, 26, 965--979, 2016.
[associated technical report: pdf].
|
G. Mazo, S. Girard & F. Forbes.
"A class of multivariate copulas based on products of bivariate copulas", Journal of Multivariate Analysis, 140, 363--376, 2015.
[associated technical report: pdf].
|
G. Mazo, S. Girard & F. Forbes.
"Weighted least square inference based on dependence coefficients for multivariate copulas",
ESAIM: Probability and Statistics, 19, 746--765, 2015.
[associated technical report: pdf].
|
L. Gardes & S. Girard. "Nonparametric estimation of the conditional tail copula", Journal of Multivariate Analysis, 137, 1--16, 2015.
[associated technical report: pdf].
|
F. Durante, S. Girard & G. Mazo.
"Copulas based on Marshall-Olkin machinery", In U. Cherubini et al, editors,
Marshall-Olkin Distributions. Advances in Theory and Applications, volume 141 of Springer Proceedings in Mathematics and Statistics, pages 15--31, Springer, 2015.
[Associated technical report: pdf].
|
C. Amblard & S. Girard.
"A new bivariate extension of FGM copulas", Metrika, 70, 1-17, 2009.
[Associated technical report: pdf].
|
C. Amblard & S. Girard. "Estimation procedures for a
semiparametric family of bivariate copulas", Journal of
Computational and Graphical Statistics, 14(2), 1-15, 2005.
[Associated technical report: pdf
ps]. |
| C. Amblard & S. Girard. "Symmetry and dependence properties
within a semiparametric family of bivariate copulas", Nonparametric
Statistics, 14(6), 715-727, 2002.
[Associated technical report: pdf
]. |
| C. Amblard & S. Girard. "A semiparametric family of symmetric
bivariate copulas", Comptes-Rendus de l'Académie des
Sciences, t. 333,Série I:129-132, 2001. |
| Intrinsic dimension estimation |
O. Chelly, L. Amsaleg, T. Furon, S. Girard, M. Houle, K. Kawarabayashi & M. Nett.
"Extreme-Value-Theoretic Estimation of Local Intrinsic Dimensionality",
Journal of Data Mining and Knowledge Discovery,
32 (6), 1768--1805, 2018.
[Associated technical report: pdf].
|
C. Bouveyron, G. Celeux & S. Girard. "Intrinsic dimension estimation by maximum likelihood in isotropic probabilistic PCA",
Pattern Recognition Letters, 32(14), 1706--1713, 2011.
[Associated technical report: pdf].
|
Dimension reduction in regression |
J. Arbel, S.Girard & H. Lorenzo,
"Shrinkage for Extreme Partial Least Squares",
Statistics and Computing, 34, 181, 2024.
[Associated technical report: pdf],
[Code: github].
|
M. Bousebata, G. Enjolras & S. Girard,
"Extreme Partial Least-Squares", Journal of Multivariate Analysis, 194, 105101, 2023.
[Associated technical report: pdf],
[Code: github].
|
S. Girard, H. Lorenzo & J. Saracco,
"Advanced topics in Sliced Inverse Regression", Journal of Multivariate Analysis, 188, 104852, 2022.
[Associated technical report: pdf].
|
A. Chiancone, F. Forbes & S. Girard.
"Student Sliced Inverse Regression",
Computational Statistics and Data Analysis, 113, 441--456, 2017.
[Associated technical report: pdf].
|
A. Chiancone, S. Girard & J. Chanussot.
"Collaborative Sliced Inverse Regression",
Communications in Statistics - Theory and Methods,
46, 6035--6053, 2017.
[Associated technical report: pdf].
|
S. Girard & J. Saracco. "An introduction to dimension reduction in nonparametric kernel regression" In D. Fraix-Burnet and D. Valls-Gabaud, editors, Regression methods for astrophysics, volume 66, pages 167--196, EDP Sciences, 2014.
[Associated technical report: pdf],
[Data and code: tar.gz]. |
R. Coudret, S. Girard, & J. Saracco.
"A new sliced inverse regression method for multivariate response",
Computational Statistics and Data Analysis, 77, 285--299, 2014.
[Associated technical report: pdf]. |
M. Chavent, S. Girard, V. Kuentz, B. Liquet, T.M.N. Nguyen & J. Saracco.
"A sliced inverse regression approach for data stream",
Computational Statistics, 29, 1129--1152, 2014.
[Associated technical report: pdf]. |
C. Bernard-Michel, S. Douté, M. Fauvel, L. Gardes & S. Girard. "Retrieval of Mars surface physical properties from OMEGA hyperspectral images using Regularized Sliced Inverse Regression", Journal of Geophysical Research - Planets, 114, E06005, 2009.
[Associated technical report:
pdf]. |
C. Bernard-Michel, L. Gardes & S. Girard. "A Note on Sliced Inverse Regression with Regularizations", Biometrics, 64, 982--986, 2008. [Associated technical report: pdf]. |
C. Bernard-Michel, L. Gardes & S. Girard.
"Gaussian Regularized Sliced Inverse Regression", Statistics and Computing, 19, 85--98, 2009.
[Associated technical report: pdf].
|
A. Gannoun, S. Girard, C. Guinot & J. Saracco. "Sliced
Inverse Regression in reference curves estimation", Computational Statistics and Data Analysis , 46(3):103-122, 2004.
[Associated technical report: pdf ps]. |
| A. Gannoun, S. Girard, C. Guinot & J. Saracco. "Reference ranges based on nonparametric quantile regression", Statistics in Medicine, 21(20):3119-3135, 2002. |
See also Functional estimation.
Bayesian approaches |
T. Moins, J. Arbel, A. Dutfoy & S. Girard,
"On the use of a local Rhat to improve MCMC convergence",
Bayesian Analysis, to appear,
[Associated technical report: pdf, code: github]. |
|
T. Moins, J. Arbel, A. Dutfoy & S. Girard,
"Discussion of the paper 'Rank-Normalization, Folding, and Localization: An Improved Rhat for Assessing Convergence of MCMC'", Bayesian Analysis, 16(2), 711--712, 2021.
[Associated technical report: pdf]. |
|