|
ANR projects |
- Vahinés, ANR MDCO (Masse de Données et Connaissances).
This three-years project is called "Visualisation et analyse d'images hyperspectrales multidimensionnelles en Astrophysique" (VAHINES). It aims at developing physical as well as mathematical models, algorithms, and software able to deal efficiently with hyperspectral multi-angle data but also with any other kind of large hyperspectral dataset (astronomical or experimental). It involves the Observatoire de la Côte d'Azur (Nice), and several universities (Strasbourg I and Grenoble I).
More ...
Figure 1. Left: Grain size of CO2 versus spectra projected on the first GSRIR axis (see Bernard-Michel et al. 2009a, 2009b). Right: Reconstructed map of grain size of CO2 on the Mars planet.
|
- Medup, ANR VMC (Vulnérabilité : Milieux et climats).
This three-years project is called "Forecast and projection in climate scenario of Mediterranean intense events: Uncertainties and Propagation on environment" (MEDUP) and deals with the quantification and identification of sources of uncertainties associated with the forecast and climate projection for Mediterranean high-impact weather events. The propagation of these uncertainties on the environment is also considered, as well as how they may combine with the intrinsic uncertainties of the vulnerability and risk analysis methods. It involves Meteo-France and several universities (Paris VI, Grenoble I and Toulouse III).
More ...
Figure 2. Map of the mean return-levels of daily rainfall(in mm) for a period of 10 years in the Cévennes-Vivarais area (see Gardes and Girard 2010)
Environmental and climate applications |
B. Barroca, P. Bernardara, S. Girard & G. Mazo.
"Considering hazard estimation uncertain in urban resilience strategies", In K. Etingoff, editor,
Ecological Resilience, Response to Climate Change and Natural Disasters, 197--220, Apple Academic Press, 2016.
| |
J. El Methni, L. Gardes & S. Girard.
"Estimation de mesures de risque pour des pluies extrêmes
dans la région Cévennes Vivarais",
La Houille Blanche, 4, 26--31, 2015. |
B. Barroca, P. Bernardara, S. Girard & G. Mazo.
"Considering hazard estimation uncertain in urban resilience strategies",
Natural Hazards and Earth System Sciences, 15, 25--34, 2015.
|
J. Carreau, D. Ceresetti, E. Ursu, S. Anquetin, J.D. Creutin, L. Gardes, S. Girard & G. Molinié. "Evaluation of classical spatial-analysis schemes of extreme rainfall", Natural Hazards and Earth System Sciences, 12, 3229--3240, 2012.
|
L. Gardes & S. Girard. "Conditional extremes from heavy-tailed distributions: An application to the estimation of extreme rainfall return levels",
Extremes, 13(2), 177--204, 2010.
[Associated technical report: pdf].
|
Econometrics |
A. Daouia, S. Girard & A. Guillou.
"A Gamma-moment approach to monotonic boundaries estimation: with applications in econometric and nuclear fields", Journal of Econometrics, 178, 727--740, 2014.
[Associated technical report: pdf, detailed version including simulations:
pdf].
|
E. Deme, S. Girard & A. Guillou.
"Reduced-bias estimator of the Proportional Hazard Premium for heavy-tailed distributions", Insurance: Mathematics and Economics, 52, 550--559, 2013.
[Associated technical report: pdf].
|
A. Daouia, L. Gardes & S. Girard "Nadaraya's estimates for large quantiles and free disposal support curves" In I. Van Keilegom and P. Wilson, editors, Exploring research
frontiers in contemporary statistics and econometrics, pages 1--22,
Springer, 2012.
[Associated technical report: pdf]. |
Image analysis |
A. Constantin, M. Fauvel & S. Girard,
"Mixture of multivariate Gaussian processes for classification of irregularly sampled satellite image time-series", Statistics and Computing, 32, 79, 2022.
[Associated technical report: pdf]. |
A. Constantin, M. Fauvel & S. Girard,
"Joint supervised classification and reconstruction of irregularly sampled satellite image times series", IEEE Transactions on Geoscience and Remote Sensing, 60, 1--13, 2022.
[Associated technical report: pdf]. |
M. Lopes, M. Fauvel, A. Ouin & S. Girard.
"Spectro-temporal heterogeneity measures from dense high spatial resolution satellite image time series: Application to grassland species diversity estimation", Remote Sensing, 9 (10), 2017.
[Associated technical report: pdf]. |
M. Lopes, M. Fauvel, S. Girard & D. Sheeren.
"Object-based classification from high resolution satellite image time series with Gaussian mean map kernels: Application to grassland management practices", Remote Sensing, 9 (7), 2017.
[Associated technical report: pdf]. |
M. Fauvel, C. Bouveyron and S. Girard, "Parsimonious Gaussian process models for the classification of hyperspectral remote sensing images", IEEE Geoscience and Remote Sensing Letters, 12, 2423--2427, 2015.
[Associated technical report: pdf]. |
C. Bouveyron & S. Girard. "Robust supervised classification with mixture models: Learning from data with uncertain labels",
Pattern Recognition, 42(11), 2649--2658, 2009.
[Associated technical report: pdf].
|
| B. Chalmond & S. Girard. "Nonlinear modeling of scattered multivariate data and its application to shape change", IEEE Pattern Analysis
and Machine Intelligence, 21(5):422-432, 1999.
[Associated technical report:
ps/pdf]. |
S. Girard, J-M. Dinten & B. Chalmond. "Building and training radiographic
flexible prior models for object identification from incomplete data", IEE
proceedings on Vision, Image and Signal Processing, 143(4):257-264,
1996. |
S. Girard, P. Guérin, H. Maître & M. Roux.
"Building detection from high resolution colour images", In
Image and Signal Processing for Remote Sensing, S.B. Serpico (ed.),
vol. 3500, p. 278-289, SPIE, 1998. |
See also High dimensional data analysis. |
Spectroscopy data |
M. Fauvel, S. Girard, S. Douté & L. Gardes.
"Machine learning methods for the inversion of hyperspectral images",
In A. Reimer, editor, Horizons in World Physics, p. 51-77, Nova Science, New-York, 2017.
[Associated technical report: pdf]. |
M. Fauvel, C. Bouveyron and S. Girard, "Parsimonious Gaussian process models for the classification of hyperspectral remote sensing images", IEEE Geoscience and Remote Sensing Letters, 12, 2423--2427, 2015.
[Associated technical report: pdf]. |
J. Jacques, C. Bouveyron, S. Girard, O. Devos, L. Duponchel & C. Ruckebusch. "Gaussian mixture models for the classification of high-dimensional vibrational spectroscopy data", Journal of Chemometrics, 24, 719--727, 2010.
[Associated technical report: pdf].
|
C. Bernard-Michel, S. Douté, M. Fauvel, L. Gardes & S. Girard. "Retrieval of Mars surface physical properties from OMEGA hyperspectral images using Regularized Sliced Inverse Regression", Journal of Geophysical Research - Planets, 114, E06005, 2009.
[Associated technical report:
pdf]. |
Biological applications |
M. Stehlik, P. Aguirre, S. Girard, P. Jordanova, J. Kiselák, S. Torres-Leiva, Z. Sadovsky & A. Rivera.
"On ecosystems dynamics",
Ecological Complexity, 29, 10--29, 2017.
[Associated technical report: pdf].
|
A. Gannoun, S. Girard, C. Guinot & J. Saracco. "Sliced
Inverse Regression
in reference curves estimation", Computational Statistics and Data
Analysis , 46(3):103-122, 2004.
[Associated technical report:
ps]. |
A. Gannoun, S. Girard, C. Guinot & J. Saracco. "Reference ranges based on nonparametric quantile regression", Statistics in Medicine, 21(20):3119-3135, 2002. |
A. Gannoun, S. Girard, C. Guinot & J. Saracco. "Trois
méthodes non paramétriques pour l'estimation de courbes de référence
- Application l'analyse de propriétés biophysiques de la
peau", Revue de Statistique Appliquée, L(1), 65-89, 2002. |
A. Gannoun, S. Girard, C. Guinot & J. Saracco.
"Implémentation en C d'estimateurs non- paramétriques de quantiles conditionnels. Application au tracé de courbes de
référence", La revue
de Modulad, 31:59-70, 2004. |
See also Functional estimation. |
Power management |
J.B. Durand, S. Girard, V. Ciriza & L. Donini. "Optimization of power consumption and user impact based on point process modeling of the request sequence" , Journal of the Royal Statistical Society series C, 62, 151--165, 2013.
[Associated technical report: pdf, Supplementary material: pdf].
|
S. Joshi, A. Lombardot, P. Flatresse, C. D'Agostino, A. Juge, E. Beigne & S. Girard.
"Statistical estimation of dominant physical parameters for leakage variability in 32nanometer CMOS under supply voltage variations", Journal of Low Power Electronics, 8:113-124, 2012. |
Network monitoring |
P. Loiseau, P. Gonçalves, S. Girard, F. Forbes & P. Primet Vicat-Blanc.
"Maximum likelihood estimation of the flow size distribution tail index from sampled packet data", ACM SIGMETRICS Performance Evaluation Review, 37(1), 263-274, 2009.
[pdf]
|